Supertex inc.

High Voltage Ring Generator

Ordering Information

Operating Voltage	Package Options
V_{PP1} - V_{NN1}	SOW-20
325V	HV430WG

Features

- 105Vrms ring signal
- Output over current protection
- □ 5.0V CMOS logic control
- □ Logic enable/disable to save power
- Adjustable deadband in single-control mode
- Power-on reset
- □ Fault output for problem detection

Applications

- Line access cards
- Set-top/Street box

Absolute Maximum Ratings

$V_{\text{PP1}} - V_{\text{NN1}}$, power supply voltage	+340V
$V_{\mbox{\tiny PP1}},$ positive high voltage supply	+220V
V_{PP2} , positive gate voltage supply	+220V
V_{NN1} , negative high voltage supply	-220V
V_{NN2} , negative gate voltage supply	-220V
V _{DD} , logic supply	+7.5V
Storage temperature	-65°C to +150°C
Power dissipation	600mW

General Description

The Supertex HV430 is a high voltage PWM ring generator integrated circuit. The high voltage outputs, V_{PGATE} and V_{NGATE} , are used to drive the gates of external high voltage P-channel and N-channel MOSFETs in a push-pull configuration. Over current protection is implemented for both the P-channel and N-channel MOSFETs. External sense resistors set the over-current trip point.

The RESET input functions as a power-on reset when connected to an external capacitor.

The FAULT output indicates an over-current condition and is cleared after 4 consecutive cycles with no overcurrent condition. A logic low on RESET or ENABLE clears the FAULT output. It is active-low and open-drain to allow wire OR'ing of multiple drivers.

 P_{gate} and N_{gate} are controlled independently by logic inputs P_{IN} and N_{IN} when the MODE pin is at logic high. A logic high on P_{IN} will turn on the external P-channel MOSFET. Similarly, a logic high on N_{IN} will turn on the external N-channel MOSFET. Lockout circuitry prevents the N and P switches from turning on simultaneously. A pulse width limiter restricts pulse widths to no less than 100-200ns.

For applications where a single control input is desired, the MODE pin should be connected to SGND. The PWM control signal is then input to the N_{IN} pin. A user-adjustable deadband in the control logic ensures break-before-make on the outputs, thus avoiding cross conduction on the high voltage output during switching. A logic high on N_{IN} will turn the external P-Channel MOSFET on and the N-Channel off, and vice versa. The IC can be powered down by applying a logic low on the ENABLE pin, placing both external MOSFETs in the off state.

Supertex Inc. does not recommend the use of its products in life support applications and will not knowingly sell its products for use in such applications unless it receives an adequate "products liability indemnification insurance agreement." Supertex does not assume responsibility for use of devices described and limits its liability to the replacement of devices determined to be defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the Supertex website: http://www.supertex.com. For complete liability information on all Supertex products, refer to the most current databook or to the Legal/Disclaimer page on the Supertex website.

Electrical Characteristics

(Over operating supply voltage unless otherwise specified, T_A = -40°C to +85°C.)

External Supplies

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
V _{PP1}	High voltage positive supply	50		200	V	
I _{PP1Q}	V _{PP} quiescent current		250	500	μA	P _{IN} =N _{IN} =0V
I _{PP1}	V_{PP} operating current			2.0	mA	No load $V_{\mbox{outp}}$ and $V_{\mbox{outp}}$ switching at 100kHz
V _{NN1}	High voltage negative supply	V _{PP1} -325		-50	V	
I _{NN1Q}	V _{NN1} quiescent current		250	500	μA	$P_{IN}=N_{IN}=0V, R_{DB}=18k\Omega$
I _{NN1}	V_{NN1} operating current			1.0	mA	No load V_{OUTP} and V_{OUTN} switching at 100kHz
V _{DD}	Logic supply voltage	4.50		5.50	V	
IDDQ	V _{DD} quiescent current		300	400	μA	$P_{IN}=N_{IN}=0V, R_{DB}=18k\Omega$
I _{DD}	V _{DD} operating current			1.0	mA	$P_{IN}=N_{IN}=100kHz$, $R_{DB}=18k\Omega$

Internal Supplies

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
V_{PP2}	Positive linear regulator output voltage	V _{PP1} -16		V _{PP1} -10	V	
V _{NN2}	Negative linear regulator output voltage	V _{NN1} +10		V _{NN1} +14	V	

Positive High Voltage Output

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
V _{Pgate}	Output voltage swing	V _{PP2}		V _{PP1}	V	No load on V _{Pgate}
R _{sourceP}	V _{Pgate} source resistance			12.5	Ω	I _{OUT} =80mA
R_{sinkP}	V _{Pgate} sink resistance			12.5	Ω	I _{out} =-80mA
t _{riseP}	V _{Pgate} rise time			50	ns	C _{load} =1.4nF
t _{fallP}	V _{Pgate} fall time			50	ns	C _{load} =1.4nF
t _{pwp(min)}	V _{Pgate} minimum pulse width (internally limited)	100	150	200	ns	
t _{delayP}	P _{IN} to Pgate delay time			300	ns	mode=1
V _{Psen}	V _{Pgate} current sense voltage	V _{PP1} -0.85	V _{PP1} -1.0	V _{PP1} -1.15	V	
t _{shortP}	V _{Pgate} current sense off time			150	ns	

Negative High Voltage Output

Symbol	Parameter	neter Min Typ		Max	Unit	Conditions
V _{Ngate}	Output voltage swing	V _{NN2}		V _{NN1}	V	No load on V _{Ngate}
R _{sourceN}	V_{Ngate} source resistance			15.0	Ω	I _{out} =80mA
R _{sinkN}	V _{Ngate} sink resistance			15.0	Ω	Ι _{ουτ} =-80mΑ
t _{riseN}	V _{Ngate} rise time			50	ns	C _{load} =1.0nF
t _{fallN}	V_{Ngate} fall time			50	ns	C _{load} =1.0nF
t _{pwn(min)}	V _{Ngate} minimum pulse width (internally limited)	100	150	200	ns	
t _{delayN}	$N_{\mbox{\scriptsize IN}}$ to $V_{\mbox{\scriptsize Ngate}}$ delay time			300	ns	mode=1
V _{Nsen}	V _{Ngate} current sense voltage	V _{NN1} +0.85	V _{NN1} +1.0	V _{NN1} +1.15	V	
t _{shortN}	V _{Ngate} current sense OFF time			150	ns	

Control Circuitry

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
VIL	Logic input low voltage	0		0.60	V	V _{DD} =5.0V
VIH	Logic input high voltage	2.7		5.0	V	V _{DD} =5.0V
I _{INdn}	Input pull-down current	0.5	1	5	μA	P _{IN} , N _{IN} , ENABLE
R _{up}	Input pull-up resistance	100	200	300	kΩ	MODE
V _{OL}	Logic output low voltage			0.50	V	V _{DD} =5.0V, I _{OUT} =-0.5mA
V _{OH}	Logic output high voltage	4.50			V	V _{DD} =5.0V, I _{OUT} =0.5mA
V _{RST(OFF)}	Reset voltage, device off	3.2		3.5	V	V _{DD} =5.0V
V _{RST(ON)}	Reset voltage, device on	3.7		4.0	V	V _{DD} =5.0V
V _{RST(HYS)}	Reset hysteresis voltage	0.3			V	V _{DD} =5.0V
I _{reset}	Reset pull-up current	7	10	13	μA	V _{RESET} =0-4.5V
t _{RST(ON)}	RESET on delay			1.0	μS	
t _{RST(OFF)}	RESET off delay			1.0	μS	
t _{EN(ON)}	ENABLE on delay	50	100	150	μS	
$t_{\text{EN(OFF)}}$	ENABLE off delay			1.0	μS	
t _{flt(hold)}	FAULT hold time		4		N _{IN} /P _{IN} cycles	ENABLE=1
t _{DB}	Deadband time	35	50	70	ns	Mode=0, Rdb=5.6k Ω
		105	140	175	ns	Mode=0, Rdb=18kΩ
t _{delay(N-P)}	N-off to P-on transistion delay			300	ns	Mode=0, Rdb<27kΩ
t _{delay(P-N)}	P-off to N-on transistion delay			300	ns	Mode=0, Rdb<27kΩ
$\Delta t_{delay(N-P)}$	Delay difference t _{delayN(off)} - t _{delayP(on)}	-80	0	80	ns	Mode=1
$\Delta t_{delay(P-N)}$	Delay difference t _{delay} P(off) - t _{delayN(on)}	-80	0	80	ns	Mode=1

Truth Table

	Logic	nputs*			Output				
N _{IN}	P _{IN}	mode	EN	RESET	External N-Channel MOSFET	External P-Channel MOSFET			
L	L	Н	н	> V _{reset(on)}	OFF	OFF			
L	Н	Н	Н	> V _{reset(on)}	OFF	ON			
н	L	Н	Н	$> V_{reset(on)}$	ON	OFF			
н	Н	Н	Н	$> V_{reset(on)}$	OFF	OFF			
н	х	L	Н	> V _{reset(on)}	OFF	ON			
L	X	L	Н	$> V_{reset(on)}$	ON	OFF			
X	Х	X	L	Х	OFF	OFF			
X	Х	Х	Х	< V _{reset(off)}	OFF	OFF			

 * Unused logic inputs should be connected to V_{DD} or GND.

Block Diagram and Application Circuit

Note: P_{IN} , N_{IN} , and ENABLE are internally pulled low. MODE is internally pulled high. A Reset capacitor in the range of 1-10 μ F will yield a couple-second turn-on delay. Tantalum is recommended.

Single-Control Mode Timing

Dual-Control Mode Timing

ENABLE Timing

RESET Timing

FAULT Timing

Note: Nsense overcurrent shown. Psense operates identically.

HV430

Pin Description

V _{PP1}	Positive high voltage supply.
V _{PP2}	Positive gate voltage supply. Generated by an internal linear regulator. A 25V, 100nF capacitor should be connected between V_{PP2} and V_{PP1} .
V _{NN1}	Negative high voltage supply.
V _{NN2}	Negative gate voltage supply. Generated by an internal linear regulator. A 25V, 100nF capacitor should be connected between V_{NN2} and V_{NN1} .
V _{DD}	Logic supply voltage.
SGnd	Low voltage logic ground.
PGnd	High voltage power ground.
P _{IN}	Logic control input. When mode is high, logic input high turns ON the external high voltage P-channel MOSFET. Internally pulled low.
N _{IN}	Logic control input. When mode is high, logic input high turns ON the external high voltage N-channel MOSFET. Internally pulled low.
ENABLE	Logic enable input. Logic high enables IC. Internally pulled low.
MODE	Logic mode input. 0=single-control; 1=dual-control. When MODE is high, N_{IN} and P_{IN} independently control N_{OUT} and P_{OUT} , respectively. When MODE is low, N_{IN} controls both outputs in a complementary manner. (See Truth Table)
FAULT	Logic output. Fault is at logic low when either current limit sense pin, V _{Psen} or V _{Nsen} , is activated. Remains active until overcurrent condition clears or ENABLE=0 or RESET=0.
RESET	Power-on reset. A capacitor connected between this pin and ground determines the delay time between application of V_{DD} and when the device outputs are enabled. Low leakage tantalum recommended.
DEADBAND	A resistor between this pin and ground sets the 'break-before-make' time between output transitions. Applicable only in single-control mode. For minimum deadtime, a $5.6k\Omega$ resistor to ground should be used. For dual-input mode, tie to Vdd.
V _{Pgate}	Gate drive for external P-channel MOSFET.
V _{Ngate}	Gate drive for external N-channel MOSFET.
V _{Psen}	Pulse by pulse over current sensing for P-Channel MOSFET.
V _{Nsen}	Pulse by pulse over current sensing for N-Channel MOSFET.

Pin Configuration

1235 Bordeaux Drive, Sunnyvale, CA 94089 TEL: (408) 744-0100 • FAX: (408) 222-4895 www.supertex.com

12/13/010

©2001 Supertex Inc. All rights reserved. Unauthorized use or reproduction prohibited.