Ordering Information

| $\mathrm{BV}_{\mathrm{DSS}} /$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{BV}_{\mathrm{DGS}}$ |

*Same as SOT-89. Product supplied on 2000 piece carrier tape reels. ${ }^{+}$MIL visual screening available.

Features

- Low threshold - 1.6 V max.
- High input impedance
- Low input capacitance - 125pF max.
- Fast switching speeds
- Low on resistance
- Free from secondary breakdown
- Low input and output leakage
- Complementary N - and P-channel devices

Applications

- Logic level interfaces - ideal for TTL and CMOS
- Solid state relays
- Battery operated systems
- Photo voltaic drives
- Analog switches
- General purpose line drivers
- Telecom switches

Absolute Maximum Ratings	
Drain-to-Source Voltage	$\mathrm{BV}_{\mathrm{DSS}}$
Drain-to-Gate Voltage	$\mathrm{BV}_{\mathrm{DGS}}$
Gate-to-Source Voltage	$\pm 20 \mathrm{~V}$
Operating and Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Temperature*	$300^{\circ} \mathrm{C}$

* Distance of 1.6 mm from case for 10 seconds.

11/12/01

Thermal Characteristics

Package	I_{D} (continuous) *	I_{D} (pulsed)	Power Dissipation $@ \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5} \mathbf{C}$	θ_{jc} ${ }^{\circ} \mathbf{C} / \mathbf{W}$	θ_{ia} ${ }^{\circ} / \mathbf{W}$	$\mathrm{I}_{\mathrm{DR}}{ }^{*}$	$\mathrm{I}_{\mathrm{DRM}}$
TO-243AA	0.89 A	4.5 A	$1.6 \mathrm{~W}^{\dagger}$	15	78^{\dagger}	0.89 A	4.5 A

* I_{D} (continuous) is limited by max rated T_{j}.
\dagger Mounted on FR5 board, $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.57 \mathrm{~mm}$. Significant P_{D} increase possible on ceramic substrate.

Electrical Characteristics (@ $25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Min	Typ	Max	Unit	Conditions
BV ${ }_{\text {DSS }}$	Drain-to-Source Breakdown Voltage	40			V	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{GS}(\text { (th) }}$	Gate Threshold Voltage	0.6		1.6	V	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$
$\Delta \mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Change in $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ with Temperature		-3.8	-4.5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$
$\mathrm{I}_{\text {GSS }}$	Gate Body Leakage			100	nA	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
$\mathrm{I}_{\text {DSS }}$	Zero Gate Voltage Drain Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=$ Max Rating
				1	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.8 \text { Max Rating } \\ & \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$	ON-State Drain Current	1.0	1.7		A	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}$
		4.0	4.5			$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}$
$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	Static Drain-to-Source ON-State Resistance		1.25	1.5	Ω	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=300 \mathrm{~mA}$
			0.8	1.0		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A}$
$\Delta \mathrm{R}_{\text {DS(ON) }}$	Change in $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ with Temperature			0.75	\%/ ${ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A}$
$\mathrm{G}_{\text {FS }}$	Forward Transconductance	0.5	0.7		ठ	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.0 \mathrm{~A}$
$\mathrm{C}_{\text {ISS }}$	Input Capacitance		70	125	pF	$\begin{aligned} & V_{G S}=0 V, V_{D S}=20 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {OSS }}$	Common Source Output Capacitance		50	70		
$\mathrm{C}_{\mathrm{RSS}}$	Reverse Transfer Capacitance		20	25		
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-ON Delay Time			10	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=20 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=500 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{GEN}}=25 \Omega \end{aligned}$
t_{r}	Rise Time			10		
$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$	Turn-OFF Delay Time			25		
t_{f}	Fall Time			13		
$\mathrm{V}_{\text {SD }}$	Diode Forward Voltage Drop		1.2	1.8	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{SD}}=1.5 \mathrm{~A}$
t_{rr}	Reverse Recovery Time		300		ns	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{SD}}=1 \mathrm{~A}$

Notes:

1. All D.C. parameters 100% tested at $25^{\circ} \mathrm{C}$ unless otherwise stated. (Pulse test: $300 \mu \mathrm{~s}$ pulse, 2% duty cycle.)
2. All A.C. parameters sample tested.

Switching Waveforms and Test Circuit

Typical Performance Curves

Output Characteristics

Transconductance vs. Drain Current

Maximum Rated Safe Operating Area

Saturation Characteristics

Power Dissipation vs. Ambient Temperature

Thermal Response Characteristics

Typical Performance Curves

