"|l|l|l||" VRE210 Precision Surface Mount Reference Supplies

THALER CORPORATION • 2015 N. FORBES BOULEVARD • TUCSON, AZ. 85745 • (520) 882-4000

FEATURES

- PIN AND FUNCTION COMPATIBLE WITH REF01
- VERY HIGH ACCURACY: 10.000 V OUTPUT $\pm 0.3 \mathrm{mV}$
- EXTREMELY LOW DRIFT: $0.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} 55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- LOW WARM-UP DRIFT: 1 ppm Typ.
- EXCELLENT STABILITY: 6 ppm/1000 Hrs. Typ.
- EXCELLENT LINE REGULATION: 3 ppm/V Typ.
- HERMETIC 20 TERMINAL CERAMIC LCC
- MILITARY PROCESSING OPTION

DESCRIPTION

VRE210 Series Precision Voltage References provide ultrastable +10.000 V outputs with ± 0.3 mV initial accuracy and temperature coefficient as low as $0.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ over the full military temperature range. This improvement in accuracy is made possible by a unique, proprietary multipoint laser compensation technique developed by Thaler Corporation. Significant improvements have been made in other performance parameters as well, including initial accuracy, warm-up drift, line regulation, and long-term stability, making the VRE210 series the most accurate and stable 10 V surface mount references available.

VRE210 devices are available in two operating temperature ranges, $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and two electrical performance grades. All devices are packaged in 20 terminal ceramic LCC packages for maximum long-term stability. " M " versions are screened for high reliability and quality.

APPLICATIONS

- PRECISION A/D and D/A CONVERTERS
-TRANSDUCER EXCITATION
- ACCURATE COMPARATOR THRESHOLD REFERENCE
- HIGH RESOLUTION SERVO SYSTEMS
- DIGITAL VOLTMETERS
- HIGH PRECISION TEST and MEASUREMENT INSTRUMENTS

SELECTION GUIDE

Type	Output	Temperature Operating Range	Max. Volt Deviation
VRE210C	+10 V	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.6 mV
VRE210CA	+10 V	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.3 mV
VRE210M	+10 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1.0 mV
VRE210MA	+10 V	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0.5 mV

ELECTRICAL SPECIFICATIONS VRE210													
MODEL PARAMETERS	C			CA			M			MA			UNITS
	MIN	TYP	MAX										
ABSOLUTE MAXIMUM RATINGS													
Power Supply Operating Temperature Storage Temperature Short Circuit Protection	$\left\|\begin{array}{c} +13.5 \\ -25 \\ -65 \end{array}\right\|$		$\begin{array}{\|l} +22 \\ 85 \\ 150 \\ \text { ous } \end{array}$	*		*	$\stackrel{*}{*}{ }_{*}^{*}$	*	$\stackrel{*}{125}$	$\stackrel{*}{-55}$	*	$\underset{*}{*}{ }_{*}$	$\begin{gathered} \mathrm{V} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \end{gathered}$
OUTPUT VOLTAGE													
VRE210		+10			*			*			*		V
OUTPUT VOLTAGE ERRORS													
Initial Error Warmup Drift $\mathrm{T}_{\text {min }}-\mathrm{T}_{\text {max }}{ }^{\text {(1) }}$ Long-Term Stability Noise (.1-10Hz)		2	$\begin{aligned} & 500 \\ & 600 \end{aligned}$		1 $*$ $*$	$\begin{array}{\|l\|} 300 \\ 300 \end{array}$		2 $*$	$\begin{aligned} & 800 \\ & 1000 \end{aligned}$		1	$\begin{aligned} & 400 \\ & 500 \end{aligned}$	$\mu \mathrm{V}$ ppm $\mu \mathrm{V}$ $\mathrm{ppm} / 1000 \mathrm{hrs}$ $\mu \mathrm{Vpp}$
OUTPUT CURRENT													
Range	± 10			*			*			*			mA
REGULATION													
Line Load		3 3	10		*	*		*	*		*	*	ppm/V $\mathrm{ppm} / \mathrm{mA}$
OUTPUT ADJUSTMENT													
Range Temperature Coeff.		$\begin{gathered} 20 \\ 4 \end{gathered}$			*			*			*		$\underset{\mathrm{mV} /{ }^{\circ} \mathrm{C} / \mathrm{mV}}{\mathrm{mV}}$
POWER SUPPLY CURRENTS ${ }^{(2)}$													
VRE210 +PS		5	7		*	*		*	*		*	*	mA
NOTES: *Same as C Models. 1.Using the box method, the specified value is the maximum deviation from the output voltage at $25^{\circ} \mathrm{C}$ over the specified operating temperature range. 2. The specified values are unloaded.													
VRE2100S REV. C June 1995													

TYPICAL PERFORMANCE CURVES

DISCUSSION OF PERFORMANCE

THEORY OF OPERATION

The following discussion refers to the schematic below. In operation, approximately 6.3 volts is applied to the noninverting input of the op amp. The voltage is amplified by the op amp to produce a 10.000 V output. The gain is determined by the networks R1 and R2: $G=1+\mathrm{R} 2 / \mathrm{R} 1$. The 6.3V zener diode is used because it is the most stable diode over time and temperature.

The zener operating current is derived from the regulated output voltage through R3. This feedback arrangement provides a closely regulated zener current. This current determines the slope of the references' voltage vs. temperature function. By trimming the zener current a lower drift over temperature can be achieved. But since the voltage vs. temperature function is nonlinear this compensation technique is not well suited for wide temperature ranges.

Thaler Corporation has developed a nonlinear compensation network of thermistors and resistors that is used in the VRE series voltage references. This proprietary network eliminates most of the nonlinearity in the voltage vs. temperature function. By then adjusting the slope, Thaler Corporation produces a very stable voltage over wide temperature ranges. This network is less than 2% of the overall network resistance so it has a negligible effect on long term stability. By using highly stable resistors in our network, we produce a voltage reference that also has very good long term stability.

APPLICATION INFORMATION

Figure 2 shows the proper connection of the VRE210 series voltage references with the optional trim resistors. Pay careful attention to the circuit layout to avoid noise pickup and voltage drops in the lines.

The VRE210 series voltage references have the ground terminal brought out on two pins (pin 9 and pin 10) which are connected together internally. This allows the user to achieve greater accuracy when using a socket. Voltage references have a voltage drop across their power supply ground pin due to quiescent current flowing through the contact resistance. If the contact resistance was constant with time and temperature, this voltage drop could be trimmed out. When the reference is plugged into a socket, this source of error can be as high as 20ppm. By connecting pin 10 to the power supply ground and pin 9 to a high impedance ground point in the measurement circuit, the error due to the contact resistance can be eliminated. If the unit is soldered into place, the contact resistance is sufficiently small that it does not effect performance.

VRE210

FIGURE 1

EXTERNAL CONNECTIONS

FIGURE 2

PIN CONFIGURATION

	INCHES		MILLIMETER	
DIM	MIN	MAX	MIN	MAX
A	0.090	0.110	2.29	2.79
B	0.022	0.028	0.56	0.71
D	0.342	0.358	8.68	9.09
D1	0.048	0.052	1.22	1.32
E	0.342	0.358	8.68	9.09
E1	0.045	0.055	1.114	1.40
j	0.010 REF		.254 REF	
h	0.040 REF		1.02 REF	
L	0.045	0.055	1.14	

