

TSTS710.

Vishay Telefunken

GaAs IR Emitting Diodes in Hermetically Sealed TO18 Case

Description

TSTS710. series are infrared emitting diodes in standard GaAs technology in a hermetically sealed TO–18 package. Their glass lenses provide a very high radiant intensity without external optics.

Features

- Very high radiant intensity
- Suitable for pulse operation
- Narrow angle of half intensity $\phi = \pm 5^{\circ}$
- Peak wavelength $\lambda_p = 950 \text{ nm}$
- High reliability
- Good spectral matching to Si photodetectors


Applications

Radiation source in near infrared range

Absolute Maximum Ratings

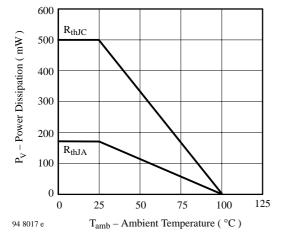
٦	amb	=	25°C	
	amb	_	20 0	

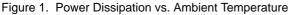
			-	
Parameter	Test Conditions	Symbol	Value	Unit
Reverse Voltage		V _R	5	V
Forward Current	$T_{case} \leq 25 \degree C$	l _F	250	mA
Peak Forward Current	$ \begin{array}{l} t_p/T = 0.5, t_p \leq 100 \; \mu s, \\ T_{case} \leq 25 \; ^\circ C \end{array} $	I _{FM}	500	mA
Surge Forward Current	t _p ≦ 100 μs	I _{FSM}	2.5	А
Power Dissipation		Pv	170	mW
	$T_{case} \leq 25 \degree C$	PV	500	mW
Junction Temperature		Ti	100	°C
Storage Temperature Range		T _{stq}	-55+100	°C
Thermal Resistance Junction/Ambient		R _{thJA}	450	K/W
Thermal Resistance Junction/Case		R _{thJC}	150	K/W

Vishay Telefunken

Basic Characteristics

 $T_{amb} = 25^{\circ}C$


Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Forward Voltage	$I_F = 100 \text{ mA}, t_p \leq 20 \text{ ms}$	V _F		1.3	1.7	V
Breakdown Voltage	I _R = 100 μA	V _(BR)	5			V
Junction Capacitance	$V_{R} = 0 V, f = 1 MHz, E = 0$	Ci		30		pF
Radiant Power	$I_F = 100 \text{ mA}, t_p \leq 20 \text{ ms}$	φ _e		7		mW
Temp. Coefficient of ϕ_e	I _F = 100 mA	TK_{\phie}		-0.8		%/K
Angle of Half Intensity		φ		±5		deg
Peak Wavelength	I _F = 100 mA	λρ		950		nm
Spectral Bandwidth	I _F = 100 mA	Δλ		50		nm
Rise Time	$I_{F} = 1.5 \text{ A}, t_{p}/T = 0.01, t_{p} \leq 10 \ \mu s$	t _r		400		ns
Fall Time	$I_{F} = 1.5 \text{ A}, t_{p}/T = 0.01, t_{p} \leq 10 \ \mu s$	t _f		400		ns


Type Dedicated Characteristics

 $T_{amb} = 25^{\circ}C$

Parameter	Test Conditions	Туре	Symbol	Min	Тур	Max	Unit
Radiant Intensity	I _F =100mA, t _p =20ms	TSTS7100	l _e	10			mW/sr
		TSTS7101	l _e	12.5		25	mW/sr
		TSTS7102	l _e	20		40	mW/sr
		TSTS7103	l _e	32		64	mW/sr

Typical Characteristics ($T_{amb} = 25^{\circ}C$ unless otherwise specified)

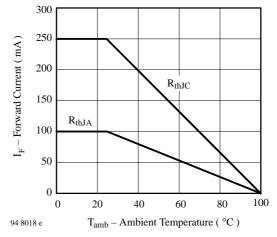
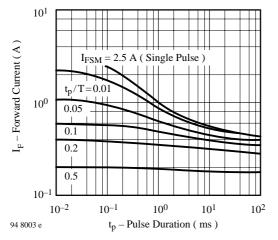



Figure 2. Forward Current vs. Ambient Temperature

TSTS710. Vishay Telefunken

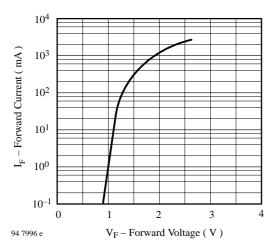
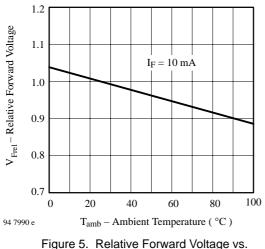



Figure 4. Forward Current vs. Forward Voltage

Ambient Temperature

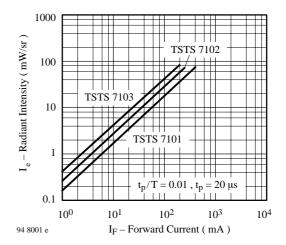


Figure 6. Radiant Intensity vs. Forward Current

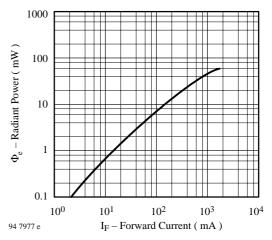


Figure 7. Radiant Power vs. Forward Current

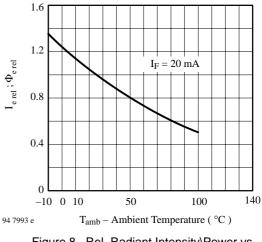


Figure 8. Rel. Radiant Intensity\Power vs. Ambient Temperature

TSTS710. Vishay Telefunken

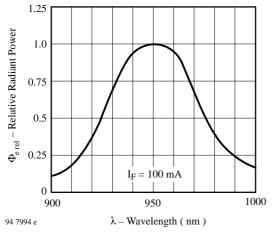


Figure 9. Relative Radiant Power vs. Wavelength

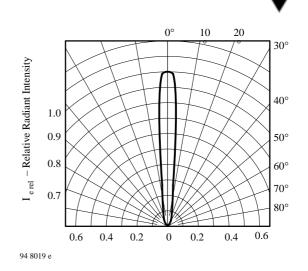
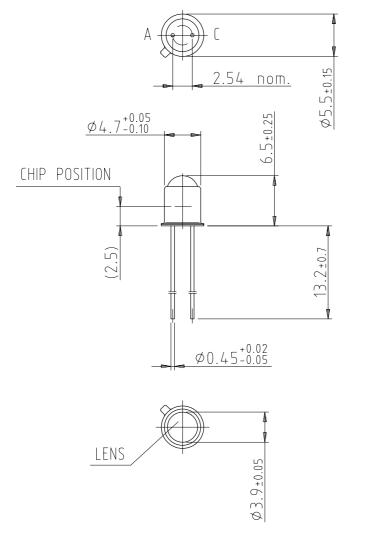



Figure 10. Relative Radiant Intensity vs. Angular Displacement

14486

technical drawings according to DIN specifications

Dimensions in mm

www.vishay.de • FaxBack +1-408-970-5600 4 (5) Document Number 81047 Rev. 2, 20-May-99

TSTS710. Vishay Telefunken

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

> Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423