

Data sheet acquired from Harris Semiconductor SCHS095

CMOS 8-Stage Presettable Synchronous Down Counters

High-Voltage Types (20-Volt Rating)

CD40102B - 2-Decade BCD Type CD40103B - 8-Bit Binary Type

CD40102B, and CD40103B consist of an 8-stage synchronous down counter with a single output which is active when the internal count is zero. The CD40102B is configured as two cascaded 4-bit BCD counters, and the CD40103B contains a single 8-bit binary counter. Each type has control inputs for enabling or disabling the clock, for clearing the counter to its maximum count, and for presetting the counter either synchronously or asynchronously. All control inputs and the CARRY-OUT/ZERO-DETECT output are active-low logic.

In normal operation, the counter is decremented by one count on each positive transition of the CLOCK. Counting is inhibited when the CARRY-IN/COUNTER ENABLE (CI/CE) input is high. The CARRY-OUT/ZERO-DETECT (CO/ZD) output goes low when the count reaches zero if the CI/CE input is low, and remains low for one full clock period.

When the SYNCHRONOUS PRESET ENA-BLE (SPE) input is low, data at the JAM input is clocked into the counter on the next positive clock transition regardless of the state of the CI/CE input. When the ASYN-CHRONOUS PRESET-ENABLE (APE) input is low, data at the JAM inputs is asynchronously forced into the counter regardless of the state of the SPE, CI/CE, or CLOCK inputs. JAM inputs JO-J7 represent two 4-bit BCD words for the CD40102B and a single 8-bit binary word for the CD40103B. When the CLEAR (CLR) input is low, the counter is asynchronously cleared to its maximum count (9910 for the CD40102B and 255₁₀ for the CD40103B) regardless of the state of any other input. The precedence relationship between control inputs is indicated in the truth table.

If all control inputs except CI/CE are high at the time of zero count, the counters will jump to the maximum count, giving a counting sequence of 100 or 256 clock pulses long.

This causes the CO/ZD output to go low to enable the clock on each succeeding clock pulse.

The CD40102B and CD40103B may be cascaded using the CI/CE input and the CO/ZD output, in either a synchronous or ripple mode as shown in Figs.21 and 22.

The CD40102B and CD40103B types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

CD40102B, CD40103B Types

Features:

- Synchronous or asynchronous preset
- Medium-speed operation: fcl = 3.6 MHz (typ.) @ VDD = 10 V
- Cascadable
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 μA at 18·V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range) = 1 V at V_{DD} = 5 V
 2 V at V_{DD} = 10 V
 2.5 V at V_{DD} = 15 V
- Standardized, symmetrical output characteristics
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

SPE APE CZ/CE CLR JAM JO B - STAGE DOWN COUNTER CO/ZD CLOCK 92C5- 28811 CD40102B, CD40103B FUNCTIONAL DIAGRAM

Applications:

- Divide-by-"N" counters
- Programmable timers
- Interrupt timers
- Cycle/program counter

RECOMMENDED OPERATING CONDITIONS AT TA = 25°C, Unless Otherwise Specified For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.

		LIN		
Characteristic	V _{DD}	Min.	Max.	Units
Supply Voltage Range (At TA = Full Package- Temperature Range)		3	18	V
	5	300	_	
Clock Pulse Width, tW	10	180	_	ns
	15	80	_	
	5	320	_	
Clear Pulse Width, tw	10	160	_	ns
A GO PAR L	15	100	_	l
(30) (31) (32) (33) (33) (33) (33) (33) (33) (33	5	360	_	
APE Pulse Width, tw	10	160	_	ns
	15	120	_	
	5	_	0.7	
Clock Input Frequency, fCL	10	-	1.8	MHz
anger a gri	15		2.4	
	5	_		
Clock Rise and Fall Time, trCL, trCL	10	-	15	μs
	15	_		
	5	280	_	
SPE Setup Time, tSU	10	140	-	ns
	15	100		
A STATE OF THE STA	5	200	l – –	
Jam Setup Time, t _{SU}	10	80	_	ns
	15	60	_	
	5	500	_	
CI/CE Setup Time, t _{SU}	10	250	-	ns
55	15	150	_ '	

MAXIMUM RATINGS, Absolute-Maximum Values:	•
DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to VSS Terminal)	0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS	+0.5V to Vnn +0.5V
DC INPUT CURRENT, ANY ONE INPUT	
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55°C to +100°C	500mW
For T _A = +100°C to +125°C	ate Linearity at 12mW/OC to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)	
OPERATING-TEMPERATURE RANGE (TA)	55°C to +125°C
STORAGE TEMPERATURE RANGE (Tstg)	65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s max	+265°C

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER-	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)					UNITS		
ISTIC	Vo	VIN	VDD				+25		1	1	
	(V)	(V)	(V)	-55	-4 0	+85	+125	Min.	Тур.	Max.	
Quiescent Device		0,5	5	5	5	150	150		0.04	5	μΑ
Current,		0,10	10	10	10	300	300	-	0.04	10	
IDD Max.	_	0,15	15	20	20	600	600	-	0.04	20	
	-	0,20	20	100	100	3000	3000	-	0.08	100	
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	-	
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	-	1
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	34	6.8	<u>-</u> ·	1
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	-	mA
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	_	
Current,	9.5	0,10	10	-1.6	-1.5	-,1.1	-0.9	-1.3	-2.6	-	
IOH Min.	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-	
Output Voltage:	_	0,5	5	0.05			-	0	0.05		
Low-Level, VOL Max.		0,10	10	0.05				-	0	0.05	
AOF Max.	-	0,15	15	0.05					0	0.05	
Output Voltage:	-	0,5	5.	4.95			4.95	5		·	
High-Level,	-	0,10	10	9.95				9.95	10	-	
VOH Min.	-	0,15	15	14.95			14.95	15	-		
Input Low	0.5, 4.5		5		1	.5		_		1.5	
Voltage, VIL Max.	1, 9	_	10	3					3		
	1.5,13.5	_	15	4				_	4		
Input High Voltage, VIH Min.	0.5, 4.5	-	5	3.5			3.5	_	_	V	
	1, 9	_	10	7				7	_		
	1.5,13.5	1	15	11 11 -				-			
Input Current IJN Max.	-	0,18	18	±0.1	±0.1	±1	±1	1	±10-5	±0.1	μΑ

Note 1: These parameters and limits also apply to the Synchronous Preset Mode should a Preset condition of JAM Zero on J₀ to J₇ exist.

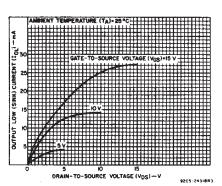


Fig. 1 — Typical output low (sink) current characteristics.

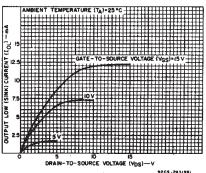


Fig. 2 — Minimum output low (sink) current characteristics.



Fig. 3 — Typical output high (source) current characteristics.

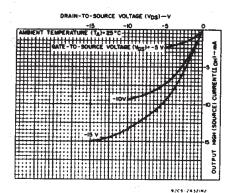


Fig. 4 — Minimum output high (source) current characteristics.

DYNAMIC ELECTRICAL CHARACTERISTICS at T $_A$ = 25°C, C $_L$ = 50 pF, Input t, t, = 20 ns, R $_L$ = 200 k Ω

Characteristic	Conditions VDD	_ A	Units		
	(V)	Min.	Тур.	Max.	1
Propagation Delay Time (tpHL, tpLH):	. 5	_	300	600	
Clock-to-Output (See Fig. 6) Note 1	10 15	-	130 95	260 190	
	5	-	200	400	
Carry In/Counter Enable-to-Output	10 15		90 65	180 130	
Asynchronous Preset Enable-to-Output	5 10	-	650 300	1300 600	ns
Note 1	15 5	_	200 375	400 750	
Clear-to-Output	10 15	- -	180 100	360 200	
Transition Time (tTHL,tTLH)	5 10 15	- -	100 50 40	200 100 80	ns
Minimum Clock Pulse Width, (t _W)	5 10 15	- -	150 90 40	300 180 80	
Minimum CLR Pulse Width (tw)	5 10 15	 	160 80 50	320 160 100	-
Minimum APE Pulse Width (t _W)	5 10 15		- 180 - 80 60	369 160 120	
Minimum APE Removal Time (t _{RM})	5 10 15	_ _ _	110 50 35	220 100 70	ns
Minimum SPE Set-Up Time (tSU)	5 10 15	- , ·	140 70 50	280 140 100	
Minimum CI/CE Setup Time (t _{SU})	5 10 15		250 125 75	500 250 150	a tu
Minimum JAM Set-Up Time (tsu) (Synchronous presetting)	5 10 15		100 40 30	200 80 60	
Maximum Clock Input Frequency (f _{CL}) (See Fig. 7)	5 10 15	0.7 1.8 2.4	1.4 3.6 4.8	- -	MHz
Input Capacitance (CIN)			5	7.5	pF

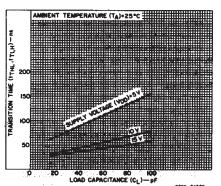


Fig. 5 — Typical transition time as a function of load capacitance.

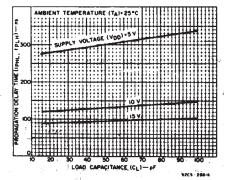


Fig. 6 — Typical propagation delay time as a function of load capacitance (clock to CO/ZD).

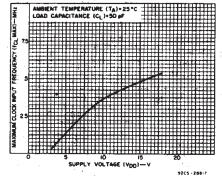


Fig. 7 — Typical maximum clock input frequency as a function of supply voltage.

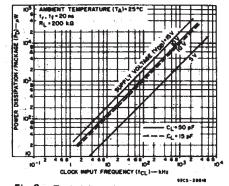


Fig. 8 — Typical dynamic power dissipation as a function of frequency.

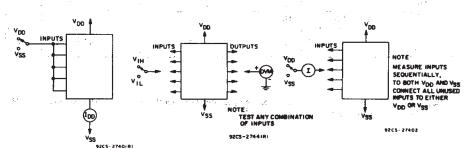
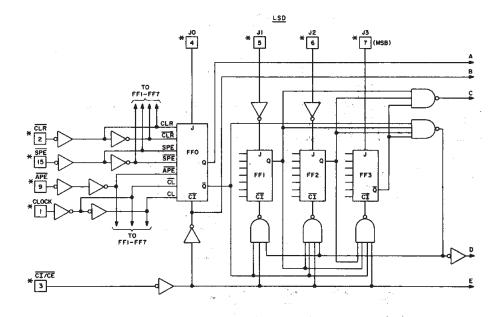



Fig. 9 — Quiescent device current test circuit.

Fig. 10 - Input voltage test circuit. Fig. 11 - Input current test circuit.

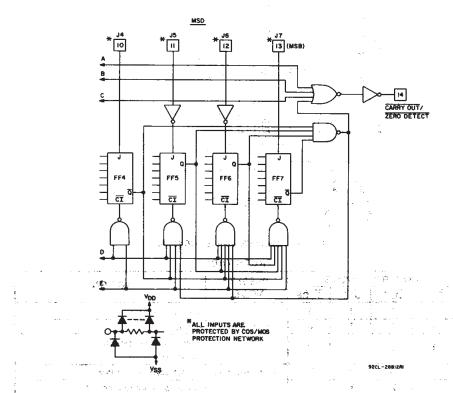


Fig. 12 - Logic diagram for CD401028.

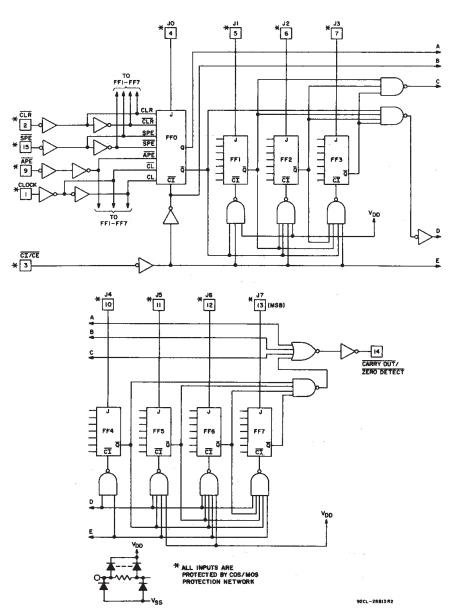


Fig. 13 — Logic diagram for CD40103B.

TRUTH TABLE

C	ONTRO	L INPUT	S	PRESET	ACTION		
CLR	APE	SPE	CI/CE	MODE	Action		
1	1	1	1		Inhibit counter		
1	1	1	0	Synchronous	Count down*		
1	1	0	×	* -	Preset on next positive clock transition		
1	0	Х	Х	Asynchronous	Preset asynchronously		
0	Х	Х	Х		Clear to maximum count		

Notes: 1, 0 = Low level

1 = High level

X = Don't care

- 2. Clock connected to clock input
- Synchronous operation: changes occur on negative-topositive clock transitions
- 4. JAM inputs: CD40102B BCD; MSD = J7,J6,J5,J4 (J7 is MSB) LSD = J3,J2,J1,J0 (J3 is MSB)

CD40103B Binary; MSB = J7, LSB = J0

[&]quot;At zero count, the counters will jump to the maximum count on the next clock transition to "High."

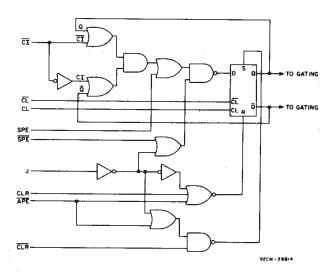


Fig. 14 — Detail logic diagram for flip-flops, FFO — FF7, used in logic diagrams for CD401028 and CD40103B.

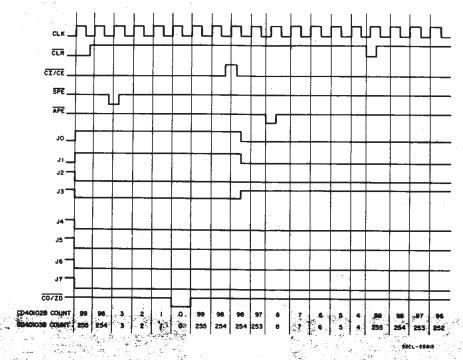


Fig. 15 - Timing diagram for CD40102B and CD40103B.

CD40102B, CD40103B

TERMINAL ASSIGNMENT

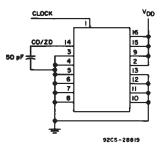


Fig.16 - Maximum clock frequency test circuit.

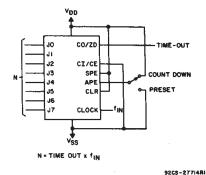


Fig.19 - Programmable timer.

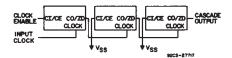


Fig.22 - Ripple cascading.

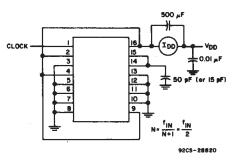


Fig.17 – Dynamic power dissipation test circuit (÷ 2 mode).

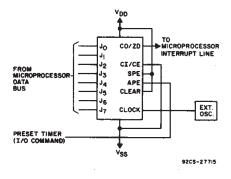


Fig. 20 - Microprocessor interrupt timer.

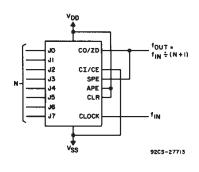
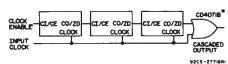
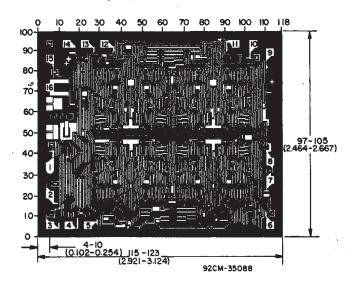
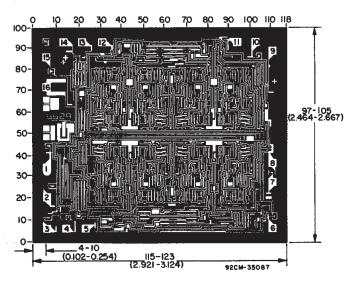



Fig. 18 - Divide-by-"N" counter.


* An output spike (160 ns @ V_{DD} = 5 V) occurs whenever two or more devices are cascaded in the parallel-clocked mode because the clock-tocarry out delay is greater than the carry-in-tocarry out delay. This spike is eliminated by gating the output of the last device with the clock as shown.


Fig.21 — Synchronous cascading.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

Dimensions and pad layout for CD401028.

Dimensions and pad layout for CD40103B.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated