

Data sheet acquired from Harris Semiconductor SCHS103

CMOS Synchronous Programmable 4-Bit Counters

High-Voltage Types (20-Volt Rating)

CD40160B — Decade with Asynchronous Clear

CD40161B — Binary with Asynchronous Clear

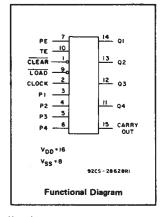
CD40162B — Decade with Synchronous Clear

CD40163B — Binary with Synchronous Clear

■ CD40160B, CD40161B, CD40162B, and CD40163B are 4-bit synchronous programmable counters. The CLEAR function of the CD40162B and CD40163B is synchronous and a low level at the CLEAR input sets all four outputs low on the next positive CLOCK edge. The CLEAR function of the CD40160B and CD40161B is asynchronous and a low level at the CLEAR input sets all four outputs low regardless of the state of the CLOCK, LOAD, or ENABLE inputs. A low level at the LOAD input disables the counter and causes the output to agree with the setup data after the next CLOCK pulse regardless of the conditions of the ENABLE inputs.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a carry output (C_{OUT}). Counting is enabled when both PE and TE inputs are high. The TE input is fed forward to enable C_{OUT}. This enabled output produces a positive output pulse with a

CD40160B, CD40161B, CD40162B, CD40163B Types


Features:

- Internal look-ahead for fast counting
- Carry output for cascading
- Synchronously programmable
- Clear asynchronous input (CD40160B, CD40161B)
- Clear synchronous input (CD40162B, CD40163B)
- Synchronous load control input
- Low-power TTL compatibility
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 μA at 18 V over full package-temperature range;
 100 nA at 18 V and 25°C
- Noise margin (over full package-temperaature range): 1 V at V_{DD} = 5 V 2 V at V_{DD} = 10 V 2.5 V at V_{DD} = 15
- 2 V at V_{DD} = 10 V 2.5 V at V_{DD} = 15 V 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

duration approximately equal to the positive portion of the Q1 output. This positive overflow carry pulse can be used to enable successive cascaded stages. Logic transitions at the PE or TE inputs may occur when the clock is either high or low.

The CD40160B, CD40161B, CD40162B, and CD40163B types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

The CD40160B through CD40163B types are functionally equivalent to and pin-compatible with the TTL counter series 74LS160 through 74LS163 respectively.

Applications:

- Programmable binary and decade counting
- Counter control/timers
- Frequency dividing

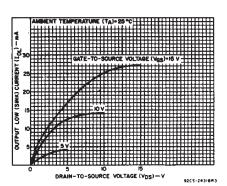
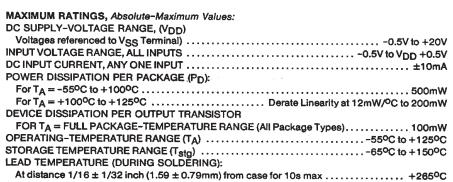



Fig. 1 – Typical output low (sink) current characteristics.

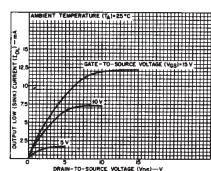


Fig. 2— Minimum output low (sink)

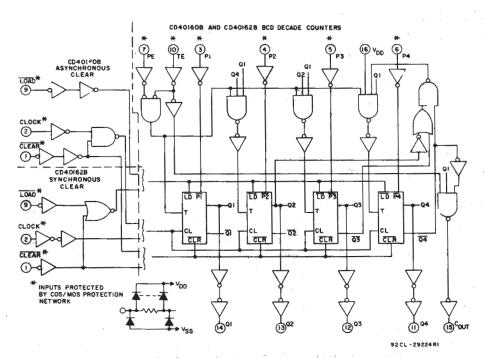


Fig. 3— Logic diagrams for CD40160B and CD40162B BCD decade counters.

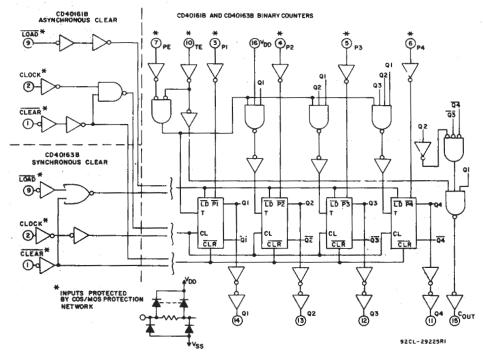


Fig. 4— Logic diagrams for CD40161B and CD40163B binary counters.

RECOMMENDED OPERATING CONDITIONS at $T_A = 25^{\circ}C$, Except as Noted For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	V _{DD}	LIM	UNITS		
	(V)	MIN.	MAX.	0,4110	
Supply Voltage Range (Full T _A = Full Package - Temperature Range)	_	3	18	v	
Setup Time: t _{SU} Data to Clock	5 10 15	240 90 60	· · -	ns	
Load to Clock	5 10 15	240 90 60	4 .	ns	
PE or TE to Clock	5 10 15	340 140 100	1 1 1	ns	
Clear to Clock (CD40162B, CD40163B)	5 10 15	340 140 100	· — ,	ns	
All Hold Times, t _H	5 10 15	0 0 0		ns	
Clear Removal Time, t _{rem} (CD40160B, CD40161B)	5 10 15	200 1 00 70		ns	
Clear Pulse Width, t _{WL} (CD40160B, CD40161B)	5 10 15	170 70 50	<u> </u>	ns	
Clock Input Frequency, f _{CL}	5 10 15	- -	2 5.5 8	MHz	
Clock Pulse Width, t _W	5 10 15	170 70 50	_ _ _	ns	
Clock Rise or Fall Time, t _F CL or t _F CL	5 10 15		200 70 15	μs	

Fig. 5- Typical output high (source)

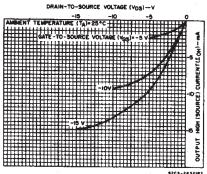


Fig. 6— Minimum output high (source) current characteristics.

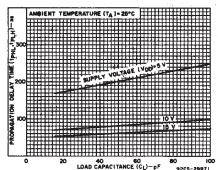
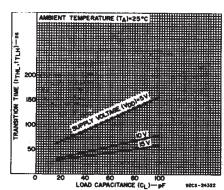


Fig. 7— Typical propagation delay time as a function of load capacitance (CLOCK to Q).

TRUTH TABLE


CLOCK	CLR	LOAD	PE	TE	OPERATION
	1	0	х	х	PRESET
	1	1	0	х	NC
	1	1	x	0	NC
	1	1	1	1	COUNT
×	0	×	х	х	RESET (CD40160B, CD40161B)
	0	x	х	х	RESET (CD40162B, CD40163B)
7	1	х	х	х	NC (CD40162B, CD40163B)

1 - HIGH LEVEL

0 = LOW LEVEL

X = DON'T CARE

NC = NO CHANGE

Typical transition time as a function of load capacitance.

CHARAC- TERISTIC	CONDITIONS		LIMITS AT INDICATED TEMPERATURES (°C)							NIT	
	V _O	VIN	V _{DD}			1	- N	+25			s
. :	(V)	(V)	(V)	-55	-40	+85	+125	Min.	Тур.	Max.	
Quiescent		0,5	5	5	5	150	150	-	0.04	5	,
Device	N= 2.35	0,10	10	10	10	300	300	+	0.04	10	μA
Current,		0,15	15	20	20	600	600		0.04	20	
.00:		0,20	20	100	100	3000	3000	-	0.08	100	Ŀ
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	. 1	- :	
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	: 1.3	2.6	_	1
OL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	_	
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	_	mΑ
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	_	
Current, I _{OH} Min.	9.5	0,10	10	1.6	-1.5	-1.1	-0.9	-1.3	-2.6	_	
	13.5	0,15	15	-4.2	-4	-2.8	2.4	-3.4	-6.8	-	
Output Voltage:	-	0,5	5	0.05 - 0 0.				0.05			
Low-Level,		0,10	10	0.05						0.05]
VOL Max.	_	0,15	15	0.05 - 0 0.0						0.05	1 v
Output .	_	0,5	5	4.95 4.95 5					_	1	
Voltage:	_	0,10	10	9.95				9.95	10	_	
High-Level, VOH Min.		0,15	15							_5	
Innuit I au	0.5,4.5	_	5			1.5				1.5	-
Input Low Voltage	1,9	-:	10			3		-		3	1
14 14	1.5,13.5	1.	15	:	, ,	4	*			4	V
Input High Voltage, V _{IH} Min.	0.5,4.5	-	5		3	3.5		3.5	\;		
	1,9	_	10	7 7							
	1.5,13.5	_	15			11		11		-	1
Input Current I _{IN} Max.	-	0,18	18	±0.1	±0.1	±1 '	±1	_	±10 ⁻⁵	±0.1	μА

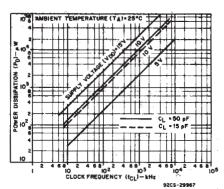


Fig. 9— Typical power dissipation as a function of CLOCK frequency.

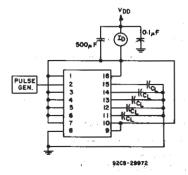


Fig. 10— Dynamic power dissipation test circuit.

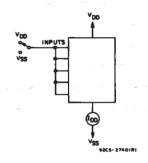


Fig. 11 - Quiescent-device-current test circuit.

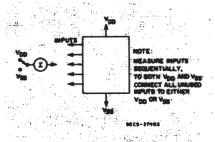


Fig. 12- Input-current test circuit.

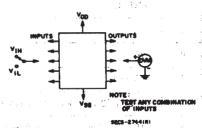
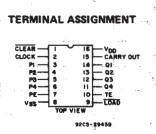



Fig. 13- Input-voltage test circuit.

DYNAMIC ELECTRICAL CHARACTERISTICS at TA = 25°C; Input t_r , $t_f = 20$ ns, $C_1 = 50$ pF, $R_1 = 200$ k Ω

CHARACTERISTIC	TEST CONDITIONS		UNITS			
	V _{DD} (V)	Min.	LL TYP	Max.		
CLOCK OPERATION				<u> </u>		
Propagation Delay Time, tpHL,tpLH Clock to Q	5 10 15	-	200 80 60	400 160 120	ns	
Clock to COUT	5 10 15		225 95 70	450 190 140	ns	
TE to COUT	5 10 15	. – –	125 55 40	250 110 80	ns	
Minimum Setup Time, tSU Data to Clock	5 10 15	- -	120 45 30	240 90 60	ns	
Load to Clock	5 10 15	- - -	120 45 30	240 90 60	ns	
PE to TE to Clock	5 10 15	_ _ _	170 70 50	340 140 100	ns	
Minimum Hold Time, t _H	5 10 15		- - -	0 0 0	ns	
Transition Time, t _{THL} ,t _{TLH}	, err = 5 - 7 generat 10 15	1. <u>-</u> - 1. 1	100 50 40	200 100 80	ns	
Minimum Clock Pulse Width, t _W	5 10 15	_ _ _ 	85 35 25	170 70 50	n\$	
Maximum Clock Frequency, fCL	5 10 15	2 5.5 8	3 8.5 12	 	MHz	
Maximum Clock Rise or Fall Time, [†] t _r CL, t _{fCL}	5 10 15	200 70 15	 	- -	μs	
CLEAR OPERATION						
Propagation Delay Time, tPHL (CD40160B, CD40161B) Clear to Q	5 10 15	1 1	250 110 80	500 220 160	ns	
Minimum Setup Time, tsu (CD40162B, CD40163B) Clear to Clock	5 10 15		170 70 50	340 140 100	ns	
Minimum Hold Time, t _H (CD40162B, CD40163B) Clear to Clock	5 10 15	-	<u> </u>	0 0 0	ns	
Minimum Clear Removal Time, t _{rem} (CD40160B, CD40161B)	5 10 15		100 50 35	200 100 70	ns	
Minimum Clear Pulse Width, tWL (CD40160B, CD40161B)	5 10 15	- -	85 35 25	170 70 50	ns	

in the second second

<sup>Except as noted.

† If more than one unit is cascaded in the parallel clocked application, t,CL should be made less than or equal to the sum of the fixed propagation delay at 50 pF and the transition time of the carry output driving stage for the estimated capacitive load.</sup>

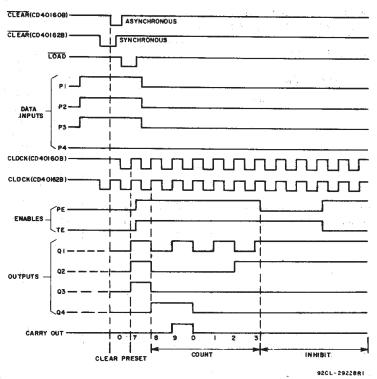


Fig. 14— Timing diagram for CD40160B, CD40162B.

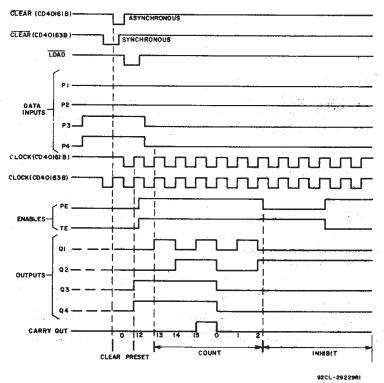


Fig. 15— Timing diagram for CD40161B, CD40163B.

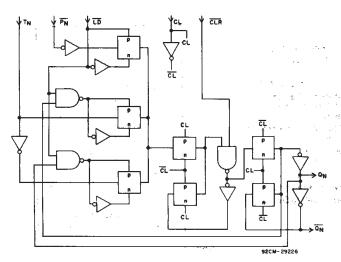
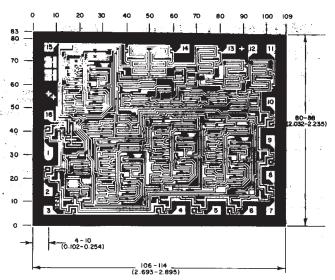



Fig. 16— Detail of flip-flops of CD40160B and CD40161B (asynchronous clear).

Dimensions and pad layout for CD40160BH. Dimensions and pad layout for CD40161BH, CD40162BH, and CD40163BH are identical.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

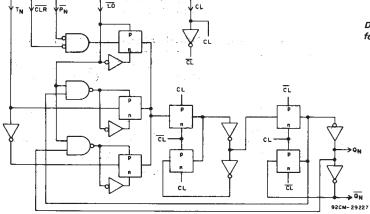


Fig. 17— Detail of flip-flops for CD40162B and CD40163B (synchronous clear).

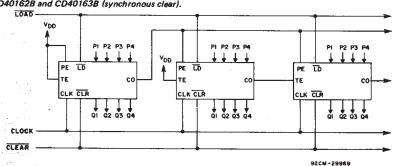


Fig. 18 - Cascaded counter packages in the parallel-clocked mode.

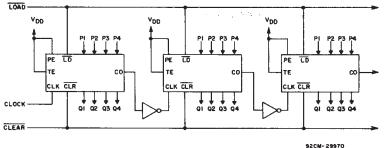


Fig. 19 - Cascaded counter packages in the ripple-clocked mode.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated