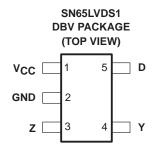
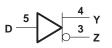
SLLS373B - JULY 1999 - DECEMBER 1999


- Meets or Exceeds ANSI TIA/EIA-644-1995 Standard
- Designed for Signaling Rates up to 630 Mbps
- Operates From a 2.4-V to 3.6-V Supply
- Package in Small-Outline Transistor Package
- Bus-Terminal ESD Exceeds 15 kV
- Low-Voltage Differential Signaling With Typical Output Voltages of 350 mV and a 100-Ω Load
- Propagation Delay Times, 1.7 ns Typical
- Power Dissipation at 200 MHz, 25 mW Typical
- LVTTL Level is 5-V Tolerant
- Driver is High Impedance With V_{CC} < 1.5 V

description


The SN65LVDS1 is a single low-voltage differential line driver in the small-outline transistor package. The outputs comply with the TIA/ EIA-644 standard and provide a minimum differential output voltage magnitude of 247 mV into a $100-\Omega$ load at signaling rates up to 630 Mbps.

When used with an LVDS receiver (such as the SN65LVDT2) in a point-to-point connection; data or clocking signals can be transmitted over printed-circuit board traces or cables at very high rates with very low electromagnetic emissions and power consumption. The packaging, low power, low EMI, high ESD tolerance, and wide supply voltage range make this device ideal for battery-powered applications.

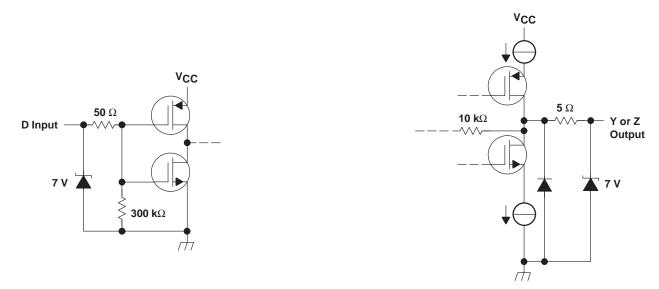
The SN65LVDS1 is characterized for operation from -40°C to 85°C.

logic diagram

Function Table

INPUT	OUTPUTS		
D	Y	Z	
н	н	L	
L	L	н	
Open	L	н	

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1999, Texas Instruments Incorporated

SLLS373B - JULY 1999 - DECEMBER 1999

equivalent input and output schematic diagrams

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage range, V _{CC} (see Note 1) –0.5 V to 4 V
Input voltage range (D) –0.5 V to 6 V
(Y or Z)
Electrostatic discharge: Y, Z, and GND (see Note 2) CLass 3, A:15 kV, B:600 V
Continuous total power dissipation
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential I/O bus voltages are with respect to network ground terminal.

2. Tested in accordance with MIL-STD-883C Method 3015.7.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C	DERATING FACTOR	T _A = 85°C
	POWER RATING	ABOVE T _A = 25°C [†]	POWER RATING
DBV	385 mW	3.1 mW/°C	200 mW

[†] This is the inverse of the junction-to-ambient thermal resistance when board-mounted (low-K) and with no air flow.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	2.4	3.3	3.6	V
High-level input voltage, V _{IH}	2			V
Low-level input voltage, VIL			0.8	V
Operating free-air temperature, T _A	-40		85	°C

SLLS373B - JULY 1999 - DECEMBER 1999

	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
V _{OD}	Differential output voltage magnitude	D. 1000	247	350	454	
$\Delta V_{OD} $	Change in differential output voltage magnitude between logic states	$R_L = 100\Omega$, See Figure 1	-50		50	mV
VOC(SS)	Steady-state common-mode output voltage		1.125		1.375	V
$\Delta V_{OC}(SS)$	Change in steady-state common-mode output voltage between logic states	See Figure 2	-50		50	mV
V _{OC(PP)}	Peak-to-peak common-mode output voltage			25	100	mV
Icc	Supply current	$V_I = 0 V \text{ or } V_{CC},$ No load		2	4	mA
				5.5	8	
IIH	High-level input current	V _{IH} = 5 V		2	20	μA
۱ _{IL}	Low-level input current	V _{IL} = 0.8 V		2	10	μΑ
los	Short-circuit output current	V_{OY} or $V_{OZ} = 0 V$		3	10	mA
		$V_{OD} = 0 V$			10	ШA
IO(OFF)	Power-off output current	$V_{CC} = 0 V, V_{O} = 3.6 V$			±1	μΑ
CIN	Input capacitance			3		pF

electrical characteristics over recommended operating conditions (unless otherwise noted)

[†] All typical values are at 25°C and with a 3.3-V.

switching characteristics over recommended operating conditions, V_{CC} = 3 V to 3.6 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	түр‡	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output			1.5	2.7	ns
t _{PHL}	Propagation delay time, high-to-low-level output	$R_{I} = 100\Omega_{0}$		1.8	2.7	ns
t _r	Differential output signal rise time	$C_{L} = 10 \text{ pF},$		0.6	1	ns
t _f	Differential output signal fall time	See Figure 3		0.7	1	ns
tsk(p)	Pulse skew (t _{pHL} – t _{pLH})§			0.3		ns

[‡] All typical values are at 25°C and with a 3.3-V. § t_{sk(p)} is the magnitude of the time difference between the high-to-low and low-to-high propagation delay times at an output.

switching characteristics over recommended operating conditions, V_{CC} = 2.4 to 2.7 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output			1.7	3.1	ns
^t PHL	Propagation delay time, high-to-low-level output	R _L = 100Ω,		2	3.1	ns
t _r	Differential output signal rise time	C _L = 10 pF,		0.6	1	ns
t _f	Differential output signal fall time	See Figure 3		0.7	1	ns
t _{sk(p)}	Pulse skew (t _{pHL} – t _{pLH})§			0.3		ns

[‡] All typical values are at 25°C and with a 3.3-V.

 $t_{k(p)}$ is the magnitude of the time difference between the high-to-low and low-to-high propagation delay times at an output.

SLLS373B - JULY 1999 - DECEMBER 1999

PARAMETER MEASUREMENT INFORMATION

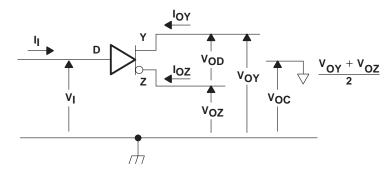
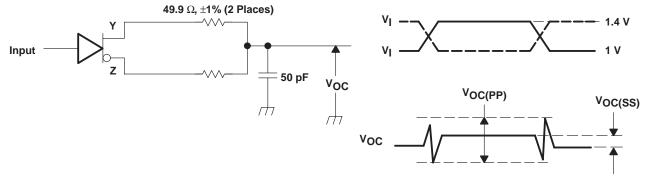



Figure 1. Driver Voltage and Current Definitions

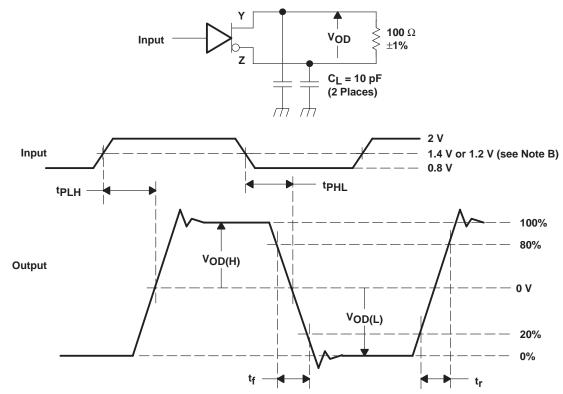
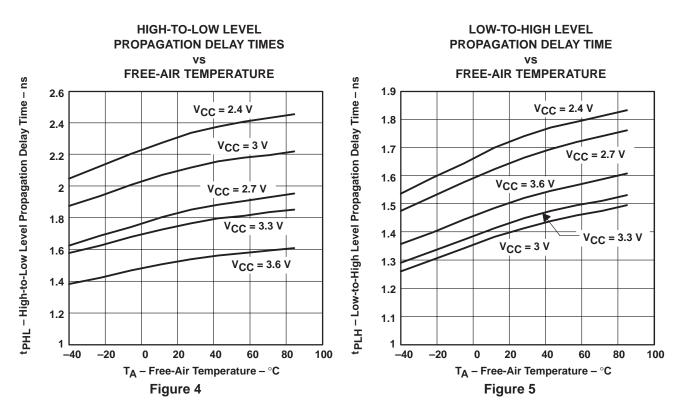

NOTE A: All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns . CL includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T. The measurement of V_{OC(PP)} is made on test equipment with a –3 dB bandwidth of at least 300 MHz.

Figure 2. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

SLLS373B - JULY 1999 - DECEMBER 1999

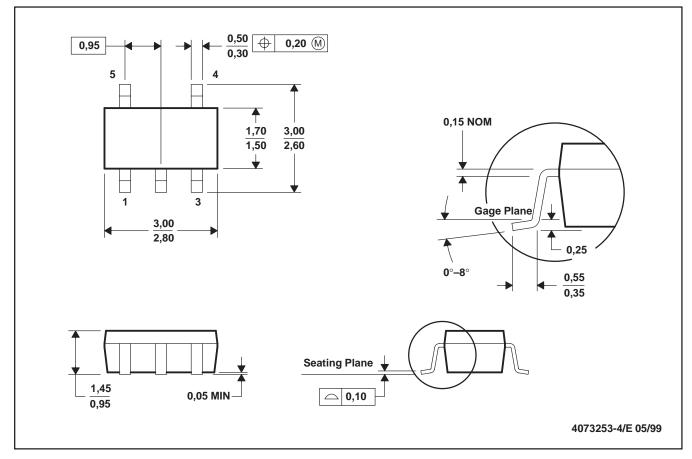
PARAMETER MEASUREMENT INFORMATION



NOTES: A. All input pulses are supplied by a generator having the following characteristics: t_f or $t_f \le 1$ ns, pulse repetition rate (PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns . C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T. B. This point is 1.4 V with V_{CC} = 3.3 V or 1.2 V with V_{CC} = 2.7 V

Figure 3. Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal

SLLS373B - JULY 1999 - DECEMBER 1999


TYPICAL CHARACTERISTICS

SLLS373B - JULY 1999 - DECEMBER 1999

MECHANICAL INFORMATION

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

DBV (R-PDSO-G5)

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-178

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated