- Single-Chip RS-232 Interface for IBM ${ }^{\text {TM }}$ PC $^{\text {TM }}$ Compatible Serial Port
- Designed to Transmit and Receive $4-\mu \mathrm{s}$ Pulses (Equivalent to $256 \mathrm{kbit} / \mathrm{s}$)
- Standby Power Is Less Than $750 \mu \mathrm{~W}$ Maximum
- Wide Supply-Voltage Range . . . 4.75 V to 15 V
- Driver Output Slew Rates Are Internally Controlled to $30-\mathrm{V} / \mu \mathrm{s}$ Maximum
- RS-232 Bus-Pin ESD Protection Exceeds:
- 15 kV, Human-Body Model
- 8-kV IEC1000-4-2, Contact
- 15-kV IEC1000-4-2, Air Gap
- Receiver Input Hysteresis ... 1000 mV Typical
- Three Drivers and Five Receivers Meet or Exceed the Requirements of TIA/EIA-232-F and ITU v. 28 Standards
- Complements the SN75LP196
- One Receiver Remains Active During WAKE-UP Mode ($100 \mu \mathrm{~A}$ Maximum)
- Matches the Flow-Through Pinout of the Industry-Standard SN75185, SN75C185, and SN75LP185, With Additional Control Pins
- Package Options Include Plastic Shrink Small-Outline (DB), Small-Outline (DW), Thin Shrink Small-Outline (PW), and Standard Plastic (NT) DIPs

DB, DW, NT, OR PW PACKAGE
(TOP VIEW)

$\mathrm{V}_{\text {DD }}$		\cup_{24}	V_{CC}
RA1	2	23] RY 1
RA2	3	22]Y2
RA3	4	21] RY3
DY1	5	20	DA1
DY2	6	19	DA2
RA4	7	18	$] \mathrm{RY} 4$
DY3	8	17	$] \mathrm{DA} 3$
RA5	9	16] RY 5
$\mathrm{V}_{\text {SS }}$	10	15	$] \mathrm{GND}$
EN	11	14	NC
MODE [12	13] NC

NC - No internal connection

description

The SN75LPE185 is a low-power bipolar device containing three drivers and five receivers, with $15-\mathrm{kV}$ ESD protection on the bus pins, with respect to each other. Bus pins are defined as those pins that tie directly to the serial-port connector, including GND. The pinout matches the flow-through design of the industry-standard SN75185, SN75C185, and SN75LP185, with the addition of four pins for control signals. The flow-through pinout of the device allows easy interconnection of the UART and serial-port connector of the IBM PC compatibles. The SN75LPE185 provides a rugged, low-cost solution for this function with the combination of bipolar processing and $15-\mathrm{kV}$ ESD protection.
The SN75LPE185 has an internal slew-rate control to provide a maximum rate of change in the output signal of $30 \mathrm{~V} / \mu \mathrm{s}$. The driver output swing is clamped at $\pm 6 \mathrm{~V}$ to enable the higher data rates associated with this device and reduce EMI emissions. Although the driver outputs are clamped, the outputs can handle voltages up to $\pm 15 \mathrm{~V}$ without damage.
The device has flexible control options for power management when the serial port is inactive. A common disable for all of the drivers and receivers is provided with the active-low enable ($\overline{\mathrm{EN}}$) input. The mode control (MODE) input selects between the STANDBY and WAKE-UP modes. With a low-level input on the MODE pin and a high-level input on the EN pin, one receiver remains active while the remaining drivers and receivers are

description (continued)

disabled to implement the WAKE-UP mode. With a high-level input on both the MODE and $\overline{E N}$ pins, all drivers and receivers are disabled to implement the STANDBY mode. The outputs of the drivers are in a high-impedance state when the device is powered off. To ensure the outputs of the receivers are in a known output level (as listed in the Application Information section of this data sheet) when the device is powered off, in STANDBY, or WAKE-UP mode, external pullup/pulldown circuitry must be provided. All the logic inputs accept 3.3-V or 5-V input signals.

The SN75LPE185 complies with the requirements of TIA/EIA-232-F and ITU v. 28 standards. These standards are for data interchange between a host computer and peripheral at signaling rates up to $20 \mathrm{kbit/s}$. The switching speeds of the SN75LPE185 support rates up to 256 kbit/s.
The SN75LPE185 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
Function Tables
DRIVERS

INPUT DA	ENABLE EN	OUTPUT DY
X	H	Z
H	L	L
L	L	H
Open	L	L
H	Open	L
L	Open	H

H = high level, L = low level,
$X=$ irrelevant, $Z=$ high impedance (off)
RECEIVERS

INPUTS		ENABLE INPUTS		OUTPUTS	
RA1-RA4	RA5	EN	MODE	RY1-RY4	RY5
H	H	L	X	L	L
L	L	L	X	H	H
X	H	H	L	Z	L
X	L	H	L	Z	H
X	X	H	H	Z	Z
Open	Open	L	X	H	H
H	H	L	Open	L	L
L	L	L	Open	H	H
X	H	H	Open	Z	L
X	L	H	Open	Z	H
H	H	Open	X	L	L
L	L	Open	X	H	H

$H=$ high level, $L=$ low level, $X=$ irrelevant, $Z=$ high impedance (off)

functional logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values are with respect to network ground terminal unless otherwise noted.
2. Per MIL-STD-883 Method 3015.7
3. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.
recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V_{CC} (see Note 4)		4.75	5	5.25	V
Supply voltage, $\mathrm{V}_{\text {DD }}$		9	12	15	V
Supply voltage, $\mathrm{V}_{\text {SS }}$		-9	-12	-15	V
High level input voltage, $\mathrm{V}_{\text {IH }}$	DA, $\overline{\text { EN }}$, MODE	2			V
Low level input voltage, V_{IL}	DA, $\overline{\text { EN }}$, MODE			0.8	V
Receiver input voltage range, V_{l}	RA	-25		25	V
High level output current, $\mathrm{IOH}^{\text {O }}$	RY			-1	mA
Low level output current, IOL	RY			2	mA
Operating free air temperature, T_{A}		0		70	${ }^{\circ} \mathrm{C}$

NOTE 4: $V_{C C}$ cannot be greater than $V_{D D}$.
supply currents over the recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {ICC }}$	Supply current for V_{CC}	No load, All inputs at minimum V_{OH} or maximum V_{OL}	$\mathrm{V}_{\mathrm{DD}}=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-9 \mathrm{~V}, \overline{\mathrm{EN}}$ at GND, See Note 5			1000	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-12 \mathrm{~V}, \overline{\mathrm{EN}}$ at GND			1000	
			$\overline{\mathrm{EN}}$, MODE at V_{CC}			650	
			$\overline{\mathrm{EN}}$ at $\mathrm{V}_{\mathrm{CC}}, \mathrm{MODE}$ at GND			700	
IDD	Supply current for VDD	No load, All inputs at minimum V_{OH} or maximum V_{OL}	$\mathrm{V}_{\mathrm{DD}}=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-9 \mathrm{~V}, \overline{\mathrm{EN}}$ at GND , See Note 5			800	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-12 \mathrm{~V}, \overline{\mathrm{EN}}$ at GND			800	
			$\overline{\mathrm{EN}}$, MODE at V_{CC}			20	
			$\overline{\mathrm{EN}}$ at $\mathrm{V}_{\text {CC }}, \mathrm{MODE}$ at GND			20	
Iss	Supply current for $\mathrm{V}_{\text {SS }}$	No load, All inputs at minimum V_{OH} or maximum V_{OL}	$\mathrm{V}_{\mathrm{DD}}=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-9 \mathrm{~V}, \overline{\mathrm{EN}}$ at GND, See Note 5			-625	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-12 \mathrm{~V}, \overline{\mathrm{EN}}$ at GND			-625	
			$\overline{\mathrm{EN}}$, MODE at V_{CC}			-50	
			$\overline{\mathrm{EN}}$ at V_{CC}, MODE at GND			-50	

NOTE 5: Minimum RS-232 driver output voltages are not attained with ± 5 - V supplies.
driver electrical characteristics over the recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
V_{OH}	High-level output voltage	$V_{I}=0.8 \mathrm{~V}, R_{L}=3 \mathrm{k} \Omega,$ See Figure 1	$\mathrm{V}_{\mathrm{DD}}=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-9 \mathrm{~V}, \overline{\mathrm{EN}}$ at GND, See Note 5	5	5.8	6.6	V
			$\begin{aligned} & \hline V_{D D}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-12 \mathrm{~V}, \\ & \mathrm{EN} \text { at GND, See Note } 6 \end{aligned}$	5	5.8	6.6	
VOL	Low-level output voltage	$V_{I}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{~K},$ See Figure 1	$V_{D D}=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-9 \mathrm{~V}, \overline{\mathrm{EN}}$ at GND, See Note 5	-5	-5.8	-6.9	V
			$\begin{aligned} & \hline V_{D D}=12 \mathrm{~V}, \mathrm{~V} S \mathrm{SS}=-12 \mathrm{~V}, \\ & \mathrm{EN} \text { at GND, See Note } 6 \end{aligned}$	-5	-5.8	-6.9	
${ }^{\text {IIH }}$	High-level input current	$V_{\text {I }}$ at $V_{C C}$				1	$\mu \mathrm{A}$
IIL	Low-level input current	$\mathrm{V}_{\text {I }}$ at GND				-1	$\mu \mathrm{A}$
IOZ	High-impedance output current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-12 \mathrm{~V}, \\ & -5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 5 \mathrm{~V} \end{aligned}$			± 100	$\mu \mathrm{A}$
IOS(H)	Short-circuit high-level output current	$\mathrm{V}_{\mathrm{O}}=\mathrm{GND}$ or $\mathrm{V}_{\text {SS }}$,	See Figure 2 and Note 7		-30	-55	mA
${ }^{\text {I OS }}$ (L)	Short-circuit low-level output current	$\mathrm{V}_{\mathrm{O}}=\mathrm{GND}$ or $\mathrm{V}_{\text {SS }}$,	See Figure 2 and Note 7		30	55	mA
r_{0}	Output resistance	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {SS }}=\mathrm{V}_{\mathrm{CC}}=0$	$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}$	300			Ω

NOTES: 5. Minimum RS-232 driver output voltages are not attained with $\pm 5-\mathrm{V}$ supplies.
6. Maximum output swing is limited to $\pm 5.5 \mathrm{~V}$ to enable the higher data rates associated with this device and to reduce EMI emissions.
7. Not more than one output should be shorted at one time.

driver switching characteristics over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPHL	Propagation delay time, high-to low-level output	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$,	$C_{L}=15 \mathrm{pF}$, See Figure 1	300	800	1600	ns
tPLH	Propagation delay time, low-to high-level output			300	800	1600	
tPZL	Driver output-enable time to low-level output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { to } 7 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	STANDBY or WAKE-UP modes, See Figures 1, 6, and Note 6		50	100	$\mu \mathrm{s}$
tPZH	Driver output-enable time to high-level output				50	100	
tPLZ	Driver output-disable time from low-level output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { to } 7 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	STANDBY or WAKE-UP modes, See Figures 1, 6, and Note 6		50	100	$\mu \mathrm{S}$
tPHZ	Driver output-disable time from high-level output				50	100	
ttich	Transition time, low-to high-level output	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, \\ & \mathrm{~V}_{S S}=-12 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { to } 7 \mathrm{k} \Omega, \end{aligned}$$\text { See Figure } 1 \text { and Note } 6$	Using 10\%-to-90\% transition region, Driver speed $=250 \mathrm{kbit} / \mathrm{s}$ $C_{L}=15 \mathrm{pF}$	375		2240	ns
			Using ± 3 - V transition region, Driver speed = $250 \mathrm{kbit} / \mathrm{s}$ $C_{L}=15 \mathrm{pF}$	200		1500	
			Using ± 2-V transition region, Driver speed $=250 \mathrm{kbit} / \mathrm{s}$ $C_{L}=15 \mathrm{pF}$	133		1000	
			Using ± 3 - V transition region, Driver speed = $125 \mathrm{kbit} / \mathrm{s}$ $C_{L}=2500 \mathrm{pF}$			2750	
${ }_{\text {t }}^{\text {THL }}$	Transition time, high-to low-level output	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SS}}=-12 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { to } 7 \mathrm{k} \Omega \end{aligned}$ See Figure 1 and Note 6	Using 10\%-to-90\% transition region, Driver speed = 250 kbit/s $C_{L}=15 \mathrm{pF}$	375		2240	ns
			Using ± 3-V transition region, Driver speed $=250 \mathrm{kbit} / \mathrm{s}$ $C_{L}=15 \mathrm{pF}$	200		1500	
			Using ± 2-V transition region, Driver speed $=250 \mathrm{kbit} / \mathrm{s}$ $C_{L}=15 \mathrm{pF}$	133		1000	
			Using ± 3 - V transition region, Driver speed $=125 \mathrm{kbit} / \mathrm{s}$ $C_{L}=2500 \mathrm{pF}$			2750	
SR	Output slew rate	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~V} D \mathrm{D}=12 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SS}}=-12 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text { to } 7 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \text { See Note } 6 \end{aligned}$	Using ± 3 - V transition region, Driver speed $=0$ to $250 \mathrm{kbit} / \mathrm{s}$	4	20	30	V/us

[^0]receiver electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{V}_{1 \mathrm{~T}_{+}}$	Positive-going input threshold voltage	See Figure 3		1.6	2	2.55	V
$\mathrm{V}_{\text {IT- }}$	Negative-going input threshold voltage	See Figure 3		0.6	1	1.45	V
$\mathrm{V}_{\text {HYS }}$	Input hysteresis, $\mathrm{V}_{1 \mathrm{I}+}-\mathrm{V}_{\mathrm{IT}}$ -	See Figure 3		600	1100		mV
V_{OH}	High-level output voltage	$\mathrm{IOH}=-1 \mathrm{~mA}$,		2.5	3.9		V
VOL	Low-level output voltage	$\mathrm{IOL}=2 \mathrm{~mA}$,			0.33	0.5	V
$\mathrm{IIH}^{\text {I }}$	High-level input current	$\mathrm{V}_{\mathrm{I}}=3 \mathrm{~V}$		0.43	0.6	1	mA
		$\mathrm{V}_{\mathrm{I}}=25 \mathrm{~V}$		3.6	5.1	8.3	
IIL	Low-level input current	$\mathrm{V}_{1}=-3 \mathrm{~V}$		-0.43	-0.6	-1	mA
		$\mathrm{V}_{\mathrm{I}}=-25 \mathrm{~V}$		-3.6	-5.1	-8.3	
$\mathrm{IOS}(\mathrm{H})$	Short-circuit high-level output current	$\mathrm{V}_{\mathrm{O}}=0$,	See Figure 5 and Note 7			-20	mA
IOS(L)	Short-circuit low-level output current	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$,	See Figure 5 and Note 7			20	mA
IOZ	High-impedance output current	$\mathrm{V}_{\mathrm{CC}}=0$ or 5 V ,	$0.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$			± 100	$\mu \mathrm{A}$
RIN	Input resistance	$\mathrm{V}_{\mathrm{I}}= \pm 3 \mathrm{~V}$ to $\pm 25 \mathrm{~V}$		3	5	7	$\mathrm{k} \Omega$

NOTE 7: Not more than one output should be shorted at one time.
receiver switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPHL Propagation delay time, high- to low-level output	STANDBY mode $C_{L}=50 \mathrm{pF},$ See Figures 4 and 7	400	900	ns
tpLH Propagation delay time, low- to high-level output		400	900	
tTLH Transition time low- to high-level output		200	500	ns
tTHL Transition time high- to low-level output		200	400	
tSK(P) Pulse skew \|tPLH - tphl		200	425	ns
tPZL Receiver output-enable time to low-level output		50	100	$\mu \mathrm{s}$
tPZH Receiver output-enable time to high-level output		50	100	
tPLZ Receiver output-disable time from low-level output		50	100	$\mu \mathrm{s}$
tPHZ Receiver output-disable time from high-level output		50	100	
tPHL Propagation delay time, high- to low-level output (WAKE-UP mode)		500	1500	ns
tpLH Propagation delay time, low- to high-level output (WAKE-UP mode)		500	1500	

NOTES: A. The pulse generator has the following characteristics:
For $\mathrm{C}_{\mathrm{L}}<1000 \mathrm{pF}: \mathrm{t}_{\mathrm{w}}=4 \mu \mathrm{~s}, \mathrm{PRR}=250 \mathrm{kbit} / \mathrm{s}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}<50 \mathrm{~ns}$.
For $\mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}: \mathrm{t}_{\mathrm{w}}=8 \mu \mathrm{~s}, \mathrm{PRR}=125 \mathrm{kbit} / \mathrm{s}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}<50 \mathrm{~ns}$.
B. C_{L} includes probe and jig capacitance.

Figure 1. Driver Parameter Test Circuit and Waveform

Figure 2. Driver Ios Test

Figure 3. Receiver V_{IT} Test

NOTES: A. The pulse generator has the following characteristics: $\mathrm{t}_{\mathrm{w}}=4 \mu \mathrm{~s}, \mathrm{PRR}=250 \mathrm{kbit} / \mathrm{s}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}<50 \mathrm{~ns}$.
B. C_{L} includes probe and jig capacitance.

Figure 4. Receiver Parameter Test Circuit and Waveform

PARAMETER MEASUREMENT INFORMATION

Inputs Outputs

Figure 5. Receiver IOS Test

LOAD CIRCUIT

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR}=250 \mathrm{kbit} / \mathrm{s}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}<50 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

Figure 6. Driver 3-State Parameter Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPHL/tPLH	Open
tPLZ/tPZL	4 V
tPHZ/tPZH	GND

LOAD CIRCUIT

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR}=250 \mathrm{kbit} / \mathrm{s}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}<50 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

Figure 7. Receiver 3-State Parameter Test Circuit and Voltage Waveforms

APPLICATION INFORMATION

receiver output states

RECEIVER KNOWN OUTPUT STATES		
DURING POWER-DOWN, STANDBY, OR WAKE-UP MODES		
RECEIVER NUMBER	SIGNAL NAME	RECEIVER OUTPUT
RY1	$\overline{\text { DCD }}$	HIGH
RY2	$\overline{\text { DSR }}$	HIGH
RY3	RX	LOW
RY4	$\overline{\text { CTS }}$	HIGH
RY5	$\overline{\mathrm{RI}}$	HIGH

fault protection during power down

Diodes placed in series with the $\mathrm{V}_{\text {DD }}$ and $\mathrm{V}_{\text {SS }}$ leads protect the SN75LPE185 in the fault condition, in which the device outputs are shorted to $\pm 15 \mathrm{~V}$ and the power supplies are at low voltage and provide low-impedance paths to ground.

Figure 8. Power-Supply Protection to Meet Power-Off Fault Conditions of TIA/EIA-232-F

APPLICATION INFORMATION

WAKE-UP mode

While in the WAKE-UP mode, all the drivers and receivers of the SN75LPE185 device are in the high-impedance state, except for receiver 5, which can be used as a Ring Indicator function. In this mode, the current drawn from the power supplies is low, to conserve power.
In today's PCs, board designers are becoming more concerned about power consumption. The flexibility of the SN75LPE185 during WAKE-UP mode allows the designer to operate the device at auxiliary power-supply voltages below specified levels. The SN75LPE185 functions properly during WAKE-UP mode, using the following power-supply conditions:
(a) $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=9 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{SS}}=-9 \mathrm{~V}$ (data-sheet specifications)
(b) $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$, and $\mathrm{V}_{S S}=-5 \mathrm{~V}$
(c) $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=$ open, and $\mathrm{V}_{S S}=$ open
(d) $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$, and V_{SS} is shorted to the most negative supply.

Condition (a) describes the minimum supply voltages necessary for the device to comply fully to specifications.
Conditions (b) and (d) describe the condition where a $-5-\mathrm{V}$ supply is not available during auxiliary power. In this case, $\mathrm{V}_{\text {SS }}$ must be shorted to the most negative supply (i.e., GND or a voltage source close to, but below GND).
Condition (c) states V_{DD} and $\mathrm{V}_{\text {SS }}$ power supplies can be shut off.
In all cases, GND is understood to be 0 V , and the power supply voltages should never exceed the absolute maximum ratings.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

[^0]: NOTE 6: Maximum output swing is limited to $\pm 5.5 \mathrm{~V}$ to enable the higher data rates associated with this device and to reduce EMI emissions.

