SLLS134E - APRIL 1992 - REVISED MAY 1997

1B-

1B+

 Nine Differential Channels for the Data and Control Paths of the Differential Small Computer Systems Interface (SCSI) 	[DL PAC (TOP \		
 Meets or Exceeds the Requirements of ANSI Standard RS-485 and ISO 8482:1987(E) 	NC [WRAP2 [WRAP1 [-	55] NC] NC] CE
 Packaged in Shrink Small-Outline Package With 25-mil Terminal Pitch 	1A [1DE/RE [5	52]9B+]9B-
 Designed to Operate at 10 Million Transfers Per Second 	2A [2DE/RE [7	50] 8B+] 8B-
 Low Disabled Supply Current 1.4 mA Typ 	3A [] 3DE/RE 4A [9	48] 7B+] 7B-] 6B+
Thermal Shutdown Protection	4DE/RE	10	1]6B-
Power-Up/Power-Down Glitch Protection	V _{CC}	12] V _{CC}
 Positive and Negative Output-Current Limiting 	GND [GND [14	44 43] GND] GND
Open-Circuit Fail-Safe Receiver Design	GND [GND [16	41] GND] GND
description	GND [] GND
The SN75LBC978 is a nine-channel differential	V _{CC} [5A [19	38] V _{CC}] 5B+
transceiver based on the 75LBC176 LinASIC™	5DE/RE]5B-
cell. Use of TI's LinBiCMOS ^{™†} process technolo-	<u>6A</u>	21		4B+
gy allows the power reduction necessary to integrate nine differential balanced transceivers [†] .	6DE/RE	22 23] 4B-
On-chip enabling logic makes this device	7A [7DE/RE [33] 3B+] 3B-
applicable for the data path (eight data bits plus		25	32] 3B-] 2B+
parity) and the control path (nine bits) for the Small	8DE/RE	26	31] 2B-

Pins 13 through 17 and 40 through 44 are connected together to the package lead frame and signal ground.

30

29

27

28

9A [

9DE/RE

characteristics using heat-sink terminals. This package is ideal for low-profile, space-restricted applications such as hard disk drives.

Computer Systems Interface (SCSI) standard.

The WRAP function allows in-circuit testing and

wired-OR channels for the BSY, RST, and SEL

The SN75LBC978 is packaged in a shrink

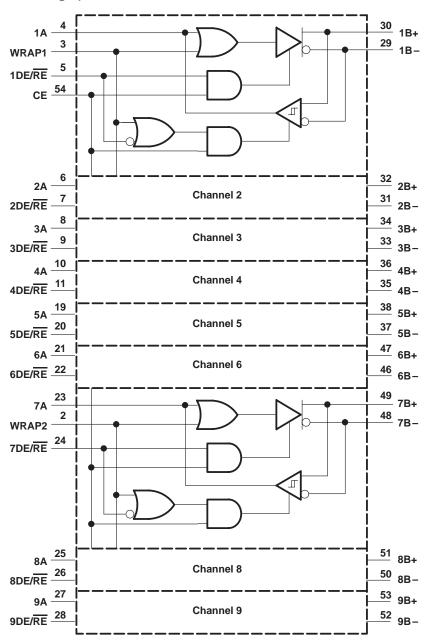
small-outline package (DL) with improved thermal

signals of the SCSI bus.

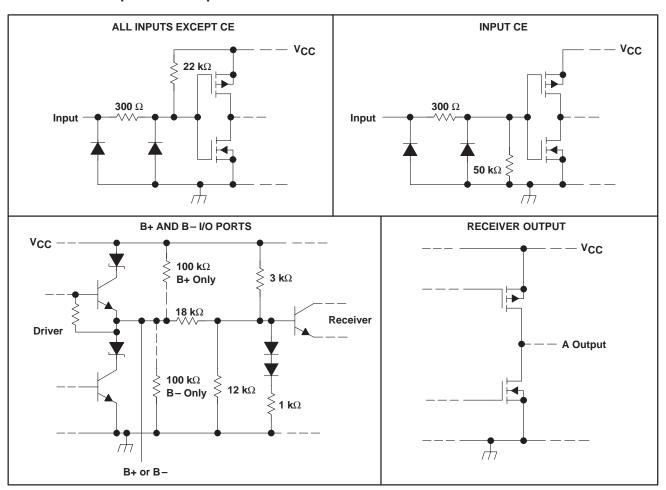
The switching speed of the SN75LBC978 is sufficient to transfer data over the data bus at 10 million transfers per second. Each of the nine identical channels conforms to the requirements of the ANSI RS-485 and ISO 8482:1987(E) standards referenced by ANSI X3.131-1993 (SCSI-2) and the proposed SCSI-3 standards.

The SN75LBC978 is characterized for operation from 0°C to 70°C.

[†] Patent Pending


LinASIC and LinBiCMOS are trademarks of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


SLLS134E - APRIL 1992 - REVISED MAY 1997

logic diagram (positive logic)

SLLS134E - APRIL 1992 - REVISED MAY 1997

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} (see Note 1)Bus voltage range	
Data I/O and control (A-side) voltage range	
Continuous power dissipation	internally limited
Operating free-air temperature range, TA	0°C to 70°C
Storage temperature range, T _{stg}	−65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

⁺ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are dc and with respect to GND.

SLLS134E - APRIL 1992 - REVISED MAY 1997

recommended operating conditions

				MAX	UNIT
Supply voltage, V _{CC}	-	4.75	5	5.25	V
Voltage at any bus terminal (separately or common-mode), V_{O} , V_{I} , or V_{IC}	B+ or B-			12	V
				-7	v
High-level input voltage, VIH	All except B+ and B-	2			V
Low-level input voltage, VIL	All except B+ and B-			0.8	V
High-level output current, IOH	B+ or B-			-60	mA
High-level output current, IOH	А			-8	mA
	B+ or B-			60	mA
Low-level output current, I _{OL}				8	mA
Operating free-air temperature, T _A				70	°C

device electrical characteristics over recommended ranges of operating conditions

	PARAME	TER	TES	T CONDITIONS	MIN	TYP†	MAX	UNIT
i	High-level input current	A, WRAP, DE/RE		V _{IH} = 2 V			-200	μΑ
ΊН	r ligh-level input current	CE	See Figure 1	vIH = z v			100	μΑ
1	Low-level input current	A, WRAP, DE/RE		V _{II} = 0.8 V			-200	μΑ
lιΓ	Low-level input current	CE		VIL = 0.8 V			100	μΑ
		All drivers and receivers disabled	CE at 0 V			1.4	3	mA
ICC	Supply current	All receivers enabled	No load, CE at 5 V,	V _{ID} = 5 V, WRAP and DE/RE at 0 V		29	45	mA
		All drivers enabled	No load, WRAP at 0 V	CE and DE/RE at 5 V,		7	10	mA
CO	Bus port output capacitant	ce	B+ or B-			19		pF
<u> </u>	Power dissipation capacita	2000	One driver			460		pF
C _{pd}			One receiver			40		pF

driver electrical characteristics over recommended ranges of operating conditions (unless otherwise noted)

	PARAMETER TEST CONDITIONS		MIN	TYP	MAX	UNIT
VOD	Differential output voltage	$V_{test} = -7 V$ to 12 V, See Figure 2	1	2		V
IOS	Output short-circuit current	See Figure 3			±250	mA
IOZ	I _{OZ} High-impedance-state output current See receiver input cu		urrent			

SLLS134E - APRIL 1992 - REVISED MAY 1997

receiver electrical characteristics over recommended ranges of operating conditions (unless otherwise noted) (see Figure 3)

	PARAME	TER	TEST CON	DITIONS	MIN	TYP [†]	MAX	UNIT
Vон	High-level output voltage		V _{ID} = 200 mV,	$I_{OH} = -8 \text{ mA}$	2.5			V
VOL	OL Low-level output voltage		$V_{ID} = -200 \text{ mV},$	I _{OL} = 8 mA			0.8	V
VIT+ Differential-input high-level threshold voltage		I _{OH} = -8 mA				0.2	V	
V _{IT} _			I _{OL} = 8 mA		-0.2			V
V _{hys}	Receiver input hysteresis vo	ltage (V _{IT+} – V _{IT} –)				45		mV
			V _I = 12 V, Other input at 0 V	V _{CC} = 5 V,		0.7	1	mA
	Dessives insut surrent	Di and D	$V_I = 12 V$, Other input at 0 V	V _{CC} = 0 V,		0.8	1	mA
łı	Receiver input current	B+ and B–	$V_I = -7 V$, Other input at 0 V	V _{CC} = 5 V,		-0.5	-0.8	mA
			$V_{I} = -7 V$, Other input at 0 V	V _{CC} = 0 V,		-0.4	-0.8	mA
107	High impodance state outpu	t ourront	V _O = GND				-200	
loz	High-impedance-state outpu		AO = ACC				50	μA

driver switching characteristics over recommended ranges of operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITION	IS	MIN	TYP†	MAX	UNIT
		See Figure 4		11.8		26.4	
^t d(OD)	$t_{d(OD)}$ Differential delay time, high- to low-level output ($t_{d(ODH)}$) or low-to high-level output ($t_{d(ODL)}$)	$V_{CC} = 5 V$, $T_A = 2$ See Figure 4	5°C,	14	18	22	ns
	to high lover output (ta(ODE))	$V_{CC} = 5 V$, $T_A = 7$ See Figure 4	0°C,	18	22	26	
+	Skew limit, the maximum difference in propagation delay times					15	
^t sk(lim)	between any two drivers on any two devices	V _{CC} = 5 V, See No	ote 2			8	ns
t _{sk(p)}	Pulse skew (t _{d(ODL)} – t _{d(ODH)})	See Figure 4			0	6	ns
tt	Transition time (t _r or t _f)				10		ns

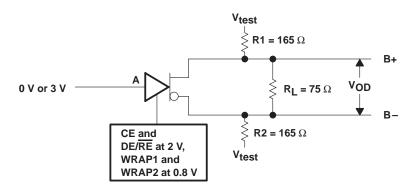
receiver switching characteristics over recommended ranges of operating conditions (unless otherwise noted)

	PARAMETER	TEST CON	NDITIONS	MIN	TYP†	MAX	UNIT
		See Figure 5		19.5		30.7	ns
^t pd	Propagation delay time, high- to low-level output (t _{PHL}) or low- to high-level output (t _{PLH})	V _{CC} = 5 V, See Figure 5	T _A = 25°C,	20.2	24.7	29.2	ns
		V _{CC} = 5 V, See Figure 5	T _A = 70°C,	21.1	25.6	30.1	
+	Skew limit, the maximum difference in propagation delay times					12	
^t sk(lim)	between any two drivers on any two devices	V _{CC} = 5 V,	See Note 2			9	ns
^t sk(p)	Pulse skew (t _{PHL} - t _{PLH})	See Figure 5			2	6	ns
t _t	Transition time (t _r or t _f)				3		ns

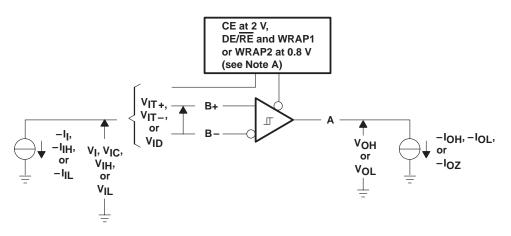
[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡] C_{pd} determines the no-load dynamic current consumption; I_S = C_{pd} · V_{CC} · f + I_{CC}.

NOTE 2: This specification applies to any 5°C band within the operating temperature range.

SLLS134E - APRIL 1992 - REVISED MAY 1997


transceiver switching characteristics over recommended ranges of operating conditions

	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
ten(TXL)	Enable time, transmit-to-receive to low-level output		80	ns
ten(TXH)	Enable time, transmit-to-receive to high-level output		80	ns
ten(RXL)	Enable time, receive-to-transmit to low-level output	See Figure 6	150	ns
ten(RXH)	Enable time, receive-to-transmit to high-level output		150	ns
t _{su}	Setup time, WRAP1 or WRAP2 before active input(s) or output(s)		150	ns


thermal characteristics

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
$R_{\theta JA}$	Junction-to-free-air thermal resistance	Board mounted, No air flow		50		°C/W
$R_{\theta JC}$	Junction-to-case thermal resistance			12		°C/W

PARAMETER MEASUREMENT INFORMATION

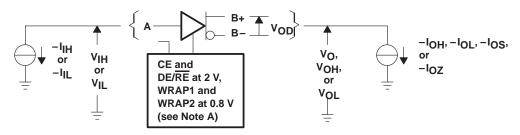
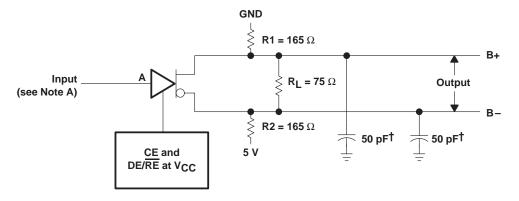
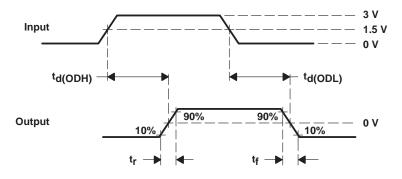

NOTE A: For the $I_{\mbox{\scriptsize OZ}}$ measurement, CE is at 0.8 V.

Figure 2. Receiver Test Circuit and Input Conditions


SLLS134E - APRIL 1992 - REVISED MAY 1997

PARAMETER MEASUREMENT INFORMATION

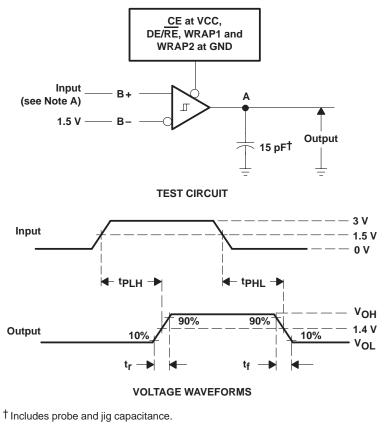


NOTE A: For the $I_{\mbox{OZ}}$ test, the CE input is at 0.8 V.

Figure 3. Driver Test and Input Conditions

TEST CIRCUIT

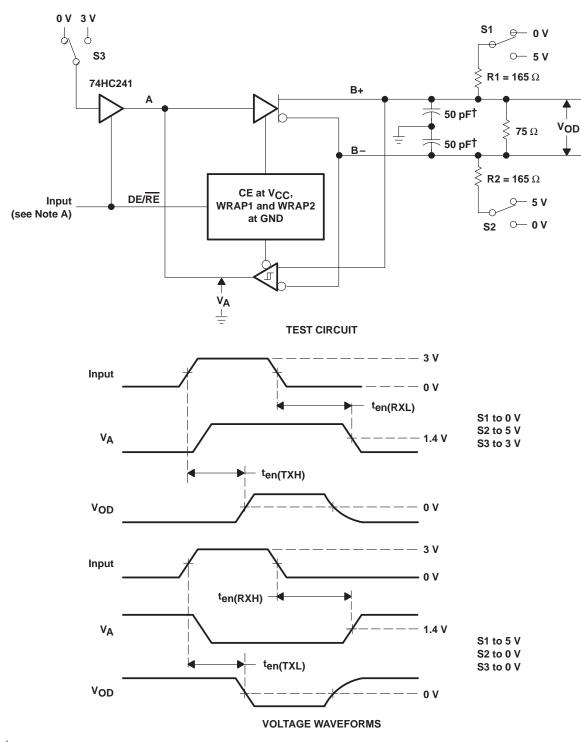
VOLTAGE WAVEFORMS


[†] Includes probe and jig capacitance.

NOTE A: The input is provided by a pulse generator with an output of 0 to 3 V, PRR of 1 MHz, 50% duty cycle, t_r and $t_f < 6$ ns, and $Z_O = 50 \Omega$.

Figure 4. Driver Propagation Delay Time Test Circuit and Waveforms

SLLS134E - APRIL 1992 - REVISED MAY 1997

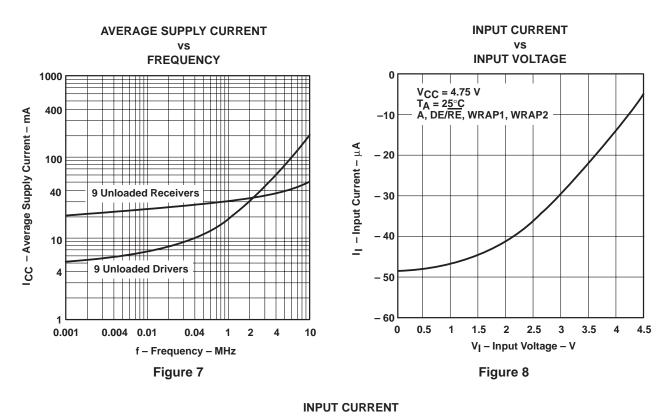

PARAMETER MEASUREMENT INFORMATION

NOTE A: The input is provided by a pulse generator with an output of 0 to 3 V, PRR of 1 MHz, 50% duty cycle, t_r and $t_f < 6$ ns, and $Z_Q = 50 \Omega$.

Figure 5. Receiver Propagation Delay Time Test Circuit and Waveforms

SLLS134E - APRIL 1992 - REVISED MAY 1997

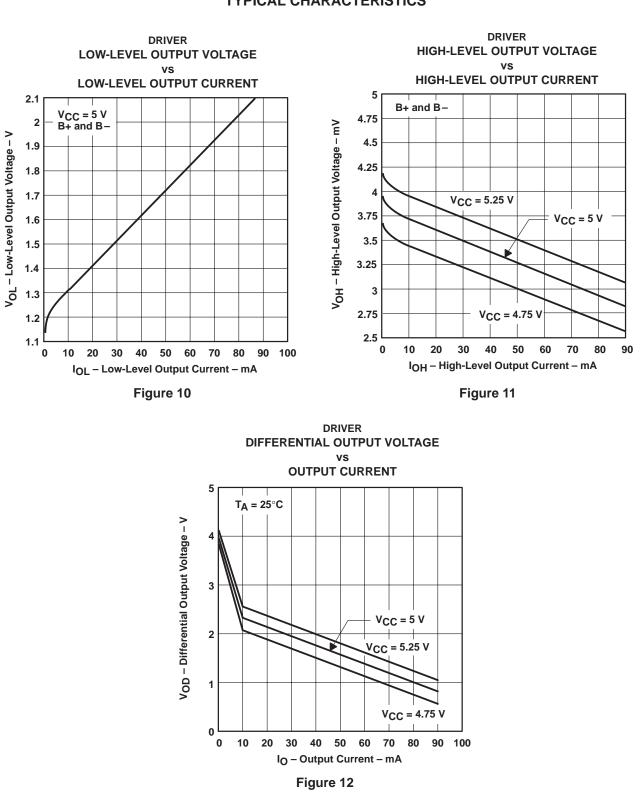
PARAMETER MEASUREMENT INFORMATION


[†] Includes probe and jig capacitance.

NOTE A: The input is provided by a pulse generator with an output of 0 to 3 V, PRR of 1 MHz, 50% duty cycle, t_r and t_f < 6 ns, and $Z_{O} = 50 \Omega$.

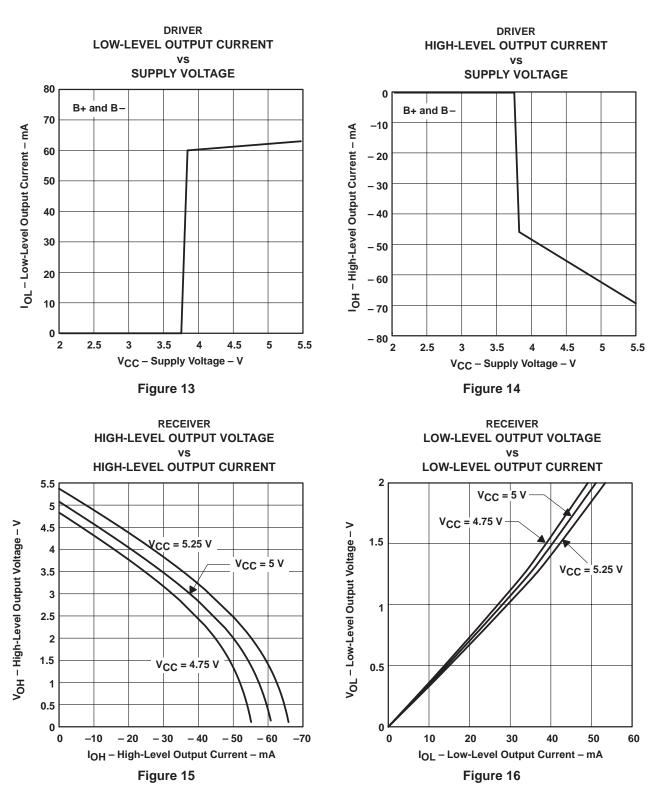
Figure 6. Enable Time Test Circuit and Voltage Waveforms

SLLS134E - APRIL 1992 - REVISED MAY 1997



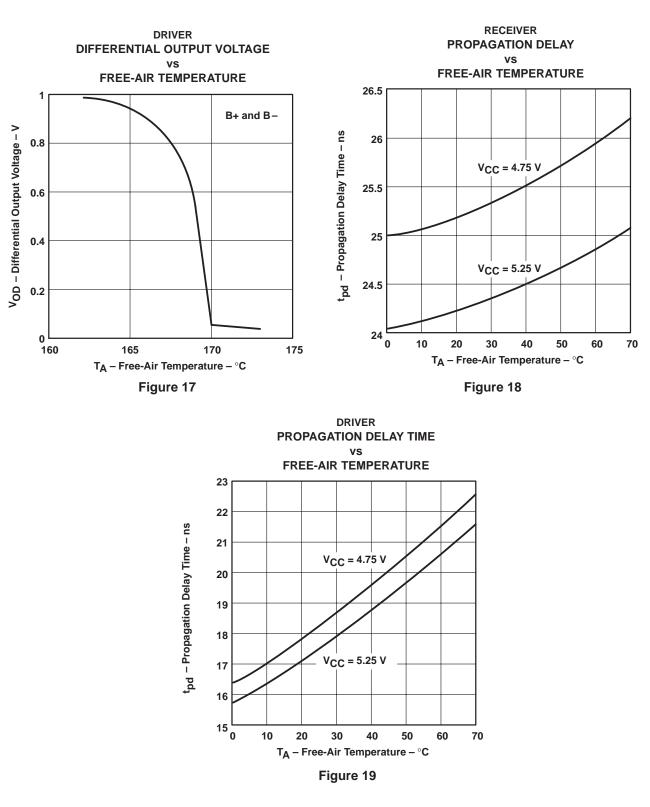
TYPICAL CHARACTERISTICS

vs **INPUT VOLTAGE** 5 $V_{CC} = 4.75 V$ $T_A = 25^{\circ}C$ B + and B -4 3 I – Input Current – mA 2 1 0 -1 - 2 - 3 - 4 - 5 0 -20 -16 -12 -8 -4 4 8 12 16 20 VI – Input Voltage – V Figure 9


SLLS134E - APRIL 1992 - REVISED MAY 1997

TYPICAL CHARACTERISTICS

SLLS134E - APRIL 1992 - REVISED MAY 1997

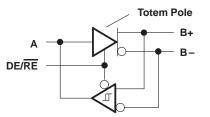


TYPICAL CHARACTERISTICS

12

SLLS134E - APRIL 1992 - REVISED MAY 1997

TYPICAL CHARACTERISTICS

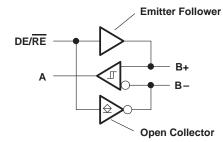

SLLS134E - APRIL 1992 - REVISED MAY 1997

APPLICATION INFORMATION

function tables

Table 1. Channel Configuration for
Totem Pole Circuit

CE is high, WRAP1 or WRAP2 is low


	0	UTPUT	S			
DE/RE	Α	в+†	в_†	Α	B+	В-
L	Х	L	Н	L	Ζ	Ζ
L	Х	Н	L	Н	Z	Ζ
н	L	Х	Х	Ζ	L	Н
Н	Н	Х	Х	Z	Н	L

H = high level L = low level X = irrelevant Z = high impedance

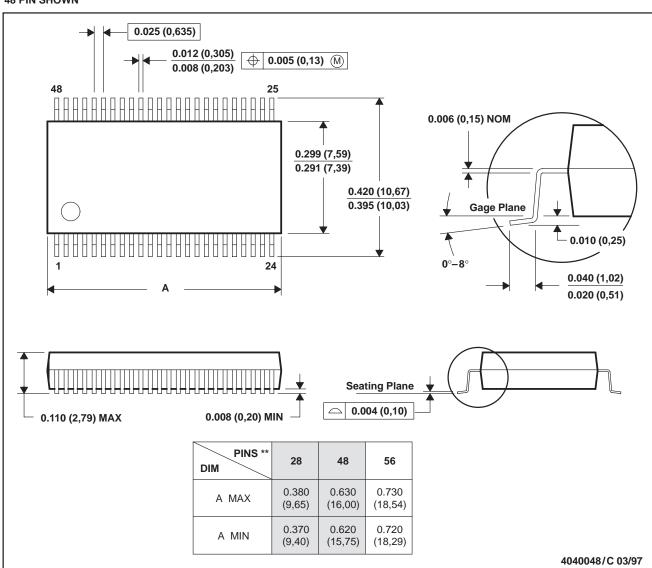
[†] An H in this column represents a voltage 200 mV higher than the other bus input. An L represents a voltage 200 mV lower than the other bus input. Any voltage less than 200 mV results in an indeterminate receiver output.

Table 2. Channel Configuration for Emitter Follower Circuit

CE is high, WRAP1 or WRAP2 is high

IN	OUTPUTS				
DE/RE	B+	В-	Α	B+	В-
L	L	Н	L	Z	Ζ
L	Н	L	н	Z	Ζ
н	Х	Х	н	Н	L
Н	Х	Х	Н	Н	L

H = high level L = low level X = irrelevant Z = high impedance



SLLS134E - APRIL 1992 - REVISED MAY 1997

MECHANICAL INFORMATION

PLASTIC SMALL-OUTLINE PACKAGE

DL (R-PDSO-G**) 48 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current and complete.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1998, Texas Instruments Incorporated