SLLS121D - AUGUST 1990 - REVISED APRIL 1998

ll v_{cc}

4A

1 4Y

h 4z

ΠG

1 3Z

1 3Y] 3A

l v_{cc}

1 4A

4Y

NC 17

16 4Z 15 G

14 🛛 3Z

13 NC

12 3Y

11 🛛 3A

NC - No internal connection

GΓ 5

2Z 🛛 6

NC 7

2Y 🛛 8

2A 🛛 9

GND [] 10

Meets or Exceeds ANSI Standards EIA/TIA-422-B and RS-485 and ITU	N PACKAGE (TOP VIEW)
Recommendation V.11	
High-Speed Advanced Low-Power Schottky	1A [] 1 16 [] V 1Y [] 2 15 [] 4
Circuitry	1Z 3 14 4
Designed for 20-MBaud Operation in Both	G 🛛 4 13 🗍 4
Serial and Parallel Applications	2Z 🚺 5 12 🗍 🖸
Designed for Multipoint Transmission on	2Y 🚺 6 11 🗍 3
Long Bus Lines in Noisy Environments	2A 🚺 7 10 🗍 3
Low Supply-Current Requirements: 55 mA Max	GND [8 9] 3
Wide Positive and Negative Input/Output Bus-Voltage Ranges	DW PACKAGE (TOP VIEW)
Driver Output Capacity ±60 mA	
Thermal Shutdown Protection	1A 🛛 1 💛 20 🖸 V
Driver Positive and Negative Current	1Y 🛛 2 19 🖸 4
Limiting	NC 3 18 4
Logically Interchangeable With SNZE172	1ZU4 17UN

description

•

The SN75ALS172A comprises four line drivers with 3-state differential outputs. They are designed to meet the requirements of ANSI Standards EIA/TIA-422-B and RS-485 and ITU Recommendation V.11. This device is optimized for balanced multipoint bus transmission at rates of up to 20 Mbaud. Each driver features wide positive and negative common-mode output voltage ranges, making it suitable for party-line applications in noisy environments.

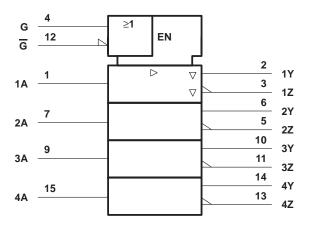
Logically Interchangeable With SN75172

The SN75ALS172A provides positive- and negative-current limiting and thermal shutdown for protection from line-fault conditions on the transmission bus line. Shutdown occurs at a junction temperature of approximately 150°C.

The SN75ALS172A is characterized for operation from 0°C to 70°C.

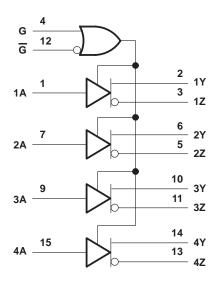
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


Copyright © 1998, Texas Instruments Incorporated

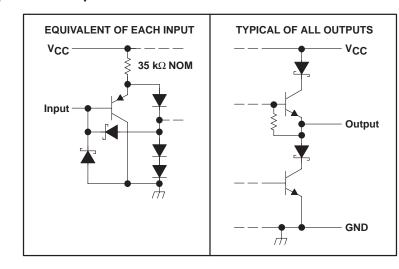
SLLS121D - AUGUST 1990 - REVISED APRIL 1998

FUNCTION TABLE (each driver)						
INPUT	ENABLES		OUTPUTS			
A	G	G	Y	Z		
Н	Н	Х	н	L		
L	н	Х	L	Н		
н	Х	L	н	L		
L	Х	L	L	Н		
Х	L	Н	z	Z		
X			Z			


H = high level, L = low level, X = irrelevant, Z = high impedance (off)

logic symbol[†]

 † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the N package.


logic diagram (positive logic)

Pin numbers shown are for the N package.

SLLS121D - AUGUST 1990 - REVISED APRIL 1998

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note 1)	
Input voltage, V _I	
Output voltage range, V _O	
Continuous total dissipation	See Dissipation Rating Table
Storage temperature range, T _{stg} Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
DW	1125 mW	9 mW/°C	720 mW	585 mW
N	1150 mW	9.2 mW/°C	736 mW	598 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
High-level input voltage, V _{IH}	2			V
Low-level input voltage, VIL			0.8	V
Common-mode output voltage, V _{OC}			12 –7	V
High-level output current, I _{OH}			-60	mA
Low-level output current, IOL			60	mA
Operating free-air temperature, T _A	0		70	°C

SLLS121D - AUGUST 1990 - REVISED APRIL 1998

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST	CONDITIONS	MIN	TYP†	MAX	UNIT	
VIK	Input clamp voltage	I _I = -18 mA				-1.5	V	
VO	Output voltage	IO = 0		0		6	V	
VOD1	Differential output voltage	IO = 0		1.5		6	V	
		V _{CC} = 5 V,	$R_L = 100 \Omega$, See Figure 1	1/2 V _{OD1} o	r 2‡		v	
IVOD2I	Differential output voltage	R _L = 54 Ω,	See Figure 1	1.5	2.5	5	v	
IVOD3	Differential output voltage	See Note 2		1.5		5	V	
$\Delta V_{OD} $	Change in magnitude of differential output voltage§	$R_L = 54 \ \Omega \text{ or } 100 \ \Omega,$	See Figure 1			±0.2	V	
VOC	Common-mode output voltage \P	$R_L = 54 \Omega$ or 100 Ω,	See Figure 1			3 –1	V	
$\Delta V_{OC} $	Change in magnitude of common-mode output voltage§	$R_L = 54 \Omega$ or 100 Ω,	See Figure 1			±0.2	V	
lO	Output current with power off	$V_{CC} = 0,$	$V_{O} = -7 V$ to 12 V			±100	μA	
I _{OZ}	High-impedance-state output current	$V_{O} = -7 V$ to 12 V				±100	μΑ	
IIН	High-level input current	V _I = 2.7 V				20	μΑ	
۱ _{IL}	Low-level input current	V _I = 0.4 V				-100	μΑ	
los	Short-circuit output current	$V_{O} = -7 V$ to 12 V				±250	mA	
	Supply current (all drivers)	No load	Outputs enabled		36	55	mA	
ICC		Outputs disabled			15	30	ШA	

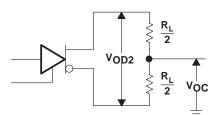
[†] All typical values are at V_{CC} = 5 V and T_A = 25°C. [‡] The minimum V_{OD2} with a 100- Ω load is either 1/2 V_{OD1} or 2 V, whichever is greater.

§ Δ|V_{OD}| and Δ|V_{OC}| are the changes in magnitude of V_{OD} and V_{OC}, respectively, that occur when the input is changed from a high level to a low level.

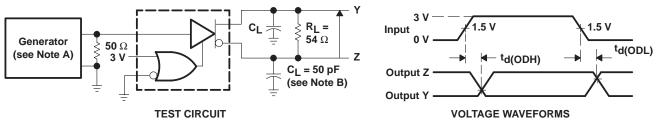
In ANSI Standard EIA/TIA-422-B, VOC, which is the average of the two output voltages with respect to ground, is called output offset voltage, Vos-

NOTE 2: See EIA Standard RS-485, Figure 3-5, Test Termination Measurement 2.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$

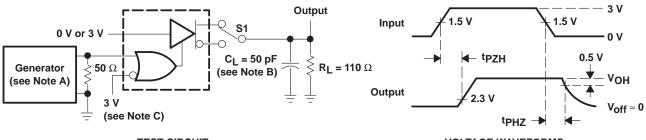

PARAMETER TEST CC		ONDITIONS	MIN	TYP†	MAX	UNIT	
td(OD)	Differential-output delay time	R _L = 54 Ω,	See Figure 2	9	15	22	ns
^t PZH	Output enable time to high level	R _L = 110 Ω,	See Figure 3	30	45	70	ns
tPZL	Output enable time to low level	R _L = 110 Ω,	See Figure 4	25	40	65	ns
^t PHZ	Output disable time from high level	R _L = 110 Ω,	See Figure 3	10	20	35	ns
^t PLZ	Output disable time from low level	R _L = 110 Ω,	See Figure 4	10	30	45	ns

[†] All typical values are at V_{CC} = 5 V and T_A = 25°C.



SLLS121D - AUGUST 1990 - REVISED APRIL 1998

PARAMETER MEASUREMENT INFORMATION

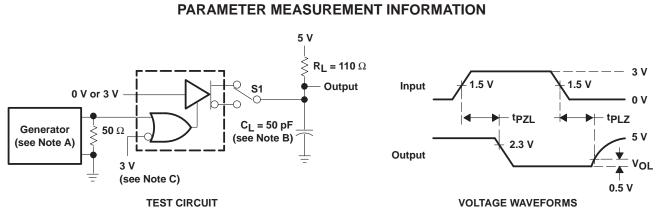


- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, $Z_O = 50 \Omega$, duty cycle = 50%, $t_f \le 5$ ns, $t_f \le 5$ ns.
 - B. $C_{\mbox{L}}$ includes probe and stray capacitance.

Figure 2. Differential Output Test Circuit and Voltage Waveforms

TEST CIRCUIT

VOLTAGE WAVEFORMS


- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, $Z_O = 50 \Omega$, duty cycle = 50%, $t_f \le 5$ ns, $t_f \le 5$ ns.
 - B. C_L includes probe and stray <u>capacitance</u>.

C. To test the active-low enable \overline{G} , ground G and apply an inverted input waveform to \overline{G} .

Figure 3. Test Circuit and Voltage Waveforms, tPZH and tPHZ

SLLS121D - AUGUST 1990 - REVISED APRIL 1998

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, $Z_O = 50 \Omega$, duty cycle = 50%, $t_f \le 5 ns$, $t_{r} \le 5$ ns.

B. C_{L} includes probe and stray capacitance. C. To test the active-low enable \overline{G} , ground G and apply an inverted input waveform to \overline{G} .

Figure 4. Test Circuit and Voltage Waveforms, tpzL and tpLZ

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated