- Three Bidirectional Transceivers
- Driver Meets or Exceeds the Requirements of ANSI EIA/TIA-422-B and RS-485 and ITU Recommendation V. 11
- Two Skew Limits Available
- Designed to Operate Up to 20 Million Data Transfers per Second (FAST-20 SCSI)
- High-Speed Advanced Low-Power Schottky Circuitry
- Low Pulse Skew . . . 5 ns Max
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- Features Independent Driver Enables and Combined Receiver Enables
- Wide Positive and Negative Input/Output Bus Voltages Ranges
- Driver Output Capacity ... $\pm 60 \mathrm{~mA}$
- Thermal Shutdown Protection
- Driver Positive- and Negative-Current Limiting
- Receiver Input Impedances ... $12 \mathrm{k} \Omega$ Min
- Receiver Input Sensitivity . . . $\pm 300 \mathrm{mV}$ Max
- Receiver Input Hysteresis . . . 60 mV Typ
- Operates From a Single 5-V Supply
- Glitch-Free Power-Up and Power-Down Protection

description

The SN75ALS171 and the SN75ALS171A triple differential bus transceivers are monolithic integrated circuits designed for bidirectional data communication on multipoint bus transmission lines. They are designed for balanced transmission lines, and each driver meets ANSI Standards EIA/TIA-422-B and RS-485 and both the drivers and receivers meet ITU Recommendation V.11. The SN75ALS171A is designed for FAST-20 SCSI and can transmit or receive data pulses as short as 30 ns with a maximum skew of 5 ns .
The SN75ALS171 and the SN75ALS171A operate from a single 5-V power supply. The drivers and receivers have individual active-high and active-low enables, respectively, which can be externally connected together to function as a direction control. The driver differential output and the receiver differential input pairs are connected internally to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus when the driver is disabled or V_{CC} is at 0 V . These ports feature wide positive and negative common-mode voltage ranges making the device suitable for party-line applications.
The SN75ALS171 and the SN75ALS171A are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Function Tables

EACH DRIVER				
INPUT	ENABLES		OUTPUTS	
D	DE	CDE	A	B
H	H	H	H	L
L	H	H	L	H
X	L	X	Z	Z
X	X	L	Z	Z

EACH RECEIVER

DIFFERENTIAL INPUTS $\mathbf{A}-\mathbf{B}$	ENABLE $\overline{\mathbf{R E}}$	OUTPUT \mathbf{R}
$\mathrm{V}_{\mathrm{ID}} \geq 0.3 \mathrm{~V}$	L	H
$-0.3 \mathrm{~V}<\mathrm{V}_{\text {ID }}<0.3 \mathrm{~V}$	L	$?$
$\mathrm{~V}_{\text {ID }} \leq-0.3 \mathrm{~V}$	L	L
X	H	Z
Open	L	H

$\mathrm{H}=$ high level, $\mathrm{L}=$ low level, ? = indeterminate, $\mathrm{X}=$ irrelevant, $\mathrm{Z}=$ high impedance (off)

AVAILABLE OPTIONS

SKEW LIMIT	PART NUMBER	
10 ns	SN75ALS171DW	SN75ALS171J
5 ns	SN75ALS171ADW	

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage, $\mathrm{V}_{\text {CC }}$ (see Note 1)	
Voltage range at any bus terminal ... 7 . 7 V to 12 V	
Enable input voltage, V_{1}	7 V
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T_{A}	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from	$260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ (1/16 inch) from	$300^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ POWER RATING
DW	1125 mW	9.0 mW/ ${ }^{\circ} \mathrm{C}$	720 mW
J	1025 mW	$8.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	656 mW

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V_{CC}		4.75	5	5.25	V
Voltage at any bus terminal (separately or common mode), $\mathrm{V}_{\text {I }}$ or $\mathrm{V}_{\text {IC }}$		-7		12	V
High-level input voltage, V_{IH}	D, CDE, DE, and $\overline{\mathrm{RE}}$	2			V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$	D, CDE, DE, and $\overline{\mathrm{RE}}$			0.8	V
Differential input voltage, VID (see Note 2)				± 12	V
High-level output current, IOH	Driver			-60	mA
	Receiver			-400	$\mu \mathrm{A}$
Low-level output current, IOL	Driver			60	mA
	Receiver			8	
Operating free-air temperature, T_{A}		0		70	${ }^{\circ} \mathrm{C}$

NOTE 2: Differential-input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B .

SN75ALS171, SN75ALS171A TRIPLE DIFFERENTIAL BUS TRANSCEIVERS

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS \dagger		MIN	TYP \ddagger	MAX	UNIT	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\boldsymbol{I}=-18 \mathrm{~mA}$				-1.5	V	
V_{O}	Output voltage	$\mathrm{I}=0$		0		6	V	
VOH	High-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{IOH}=-55 \mathrm{~mA} \end{aligned}$	2.7			V	
VOL	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{IOL}=55 \mathrm{~mA} \end{aligned}$			1.7	V	
\|VOD1 ${ }^{\text {\| }}$	Differential output voltage	$\mathrm{I}=0$		1.5		6	V	
\| $\mathrm{V}_{\text {OD2 }}$ \|	Differential output voltage	$R \mathrm{~L}=100 \Omega$,	See Figure 1	$\begin{gathered} \hline 1 / 2 \mathrm{~V}_{\mathrm{OD} 1} \\ \text { or } 2 \S \end{gathered}$	2.5	5	V	
		$\mathrm{R}_{\mathrm{L}}=54 \Omega$,	See Figure 1	1.5	2.5	5		
VOD3	Differential output voltage	$\mathrm{V}_{\text {test }}=-7 \mathrm{~V}$ to 12 V ,	See Figure 2	1.5		5	V	
$\Delta \mid$ V ODl	Change in magnitude of differential output voltage ${ }^{\\|}$	$\mathrm{R}_{\mathrm{L}}=54 \Omega$ or 100Ω,	See Figure 1			± 0.2	V	
VOC	Common-mode output voltage					3	V	
$\Delta \mid \mathrm{VoCl}$	Change in magnitude of common-mode output voltage ${ }^{\\|}$					± 0.2	V	
Io	Output current	Output disabled, See Note 3	$\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$			1	mA	
			$\mathrm{V}_{\mathrm{O}}=-7 \mathrm{~V}$			-0.8		
${ }^{\text {IIH }}$	High-level enable-input current	D and DE	$\mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$	
		CDE				60		
IIL	Low-level enable-input current	D and DE	$\mathrm{VIL}=0.4 \mathrm{~V}$			-100		
		CDE				-900		
Ios	Short-circuit output current	$\mathrm{V}_{\mathrm{O}}=-6 \mathrm{~V}$				-250	mA	
		$\mathrm{V}_{\mathrm{O}}=0$				-150		
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$				250		
		$\mathrm{V}_{\mathrm{O}}=8 \mathrm{~V}$				250		
ICC	Supply current	No load	Outputs enabled		69	90	mA	
			Outputs disabled		57	78		

\dagger The power-off measurement in ANSI Standard EIA/TIA-422-B applies to disabled outputs only and is not applied to combined inputs and outputs.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ The minimum $\mathrm{V}_{\text {OD2 }}$ with $100-\mathrm{W}$ load is either $1 / 2 \mathrm{~V}_{\mathrm{OD} 2}$ or 2 V , whichever is greater.
$\mathbb{I}_{\Delta\left|V_{O D}\right|}$ and $\Delta\left|V_{O C}\right|$ are the changes in magnitude of $V_{O D}$ and $V_{O C}$, respectively, that occur when the input is changed from a high level to a low level.
NOTE 3: This applies for both power on and off; refer to EIA Standard RS-485 for exact conditions. The EIA/TIA-422-B limit does not apply for a combined driver and receiver terminal.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS		MIN	TYPt	MAX	UNIT
$\mathrm{t}_{\mathrm{d}}(\mathrm{OD})$	Differential output delay time	ALS171	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=54 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	See Figure 3,	3		13	ns
		ALS171A			6		11	
		ALS171	$\begin{aligned} & \mathrm{R}_{\mathrm{L} 1}=\mathrm{R}_{\mathrm{L} 3}=165 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=60 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L} 2}=75 \Omega, \end{aligned}$	$\mathrm{V}_{\text {TERM }}=5 \mathrm{~V}$, See Figure 6	3		13	
		ALS171A			6		11	
${ }^{\text {tsk }}$ (p)	Pulse skew \ddagger		$\mathrm{R}_{\mathrm{L}}=54 \Omega,$ See Figure 3	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,		1	5	ns
			$\begin{aligned} & \mathrm{R}_{\mathrm{L} 1}=\mathrm{R}_{\mathrm{L} 3}=165 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=60 \mathrm{pF}, \end{aligned}$	$\mathrm{R}_{\mathrm{L} 2}=75 \Omega,$ See Figure 6		1	5	ns
${ }_{\text {tsk }}(\mathrm{lim})$	Skew limit§	ALS171	$\mathrm{R}_{\mathrm{L}}=54 \Omega$,	$\mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$,			10	ns
		ALS171A	See Figure 3				5	
		ALS171	$\begin{aligned} & R_{\mathrm{L} 1}=R_{\mathrm{L} 3}=165 \Omega, \\ & C_{\mathrm{L}}=60 \mathrm{pF}, \end{aligned}$	$\mathrm{R}_{\mathrm{L} 2}=75 \Omega,$$\text { See Figure } 6$			10	
		ALS171A					5	
${ }_{t}($ (OD)	Differential-output transition time		$\mathrm{R}_{\mathrm{L}}=54 \Omega,$ See Figure 3	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	3	8	13	ns
			$\begin{aligned} & \mathrm{R}_{\mathrm{L} 1}=\mathrm{R}_{\mathrm{L} 3}=165 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=60 \mathrm{pF}, \\ & \text { See Figure } 6 \end{aligned}$	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L} 2}=75 \Omega, \\ & \mathrm{~V}_{\mathrm{TERM}}=5 \mathrm{~V}, \end{aligned}$	3	8	13	
tPZH	Output enable time to high level		$\mathrm{R}_{\mathrm{L}}=110 \Omega$,	See Figure 4		30	50	ns
tPZL	Output enable time to low level		$\mathrm{R}_{\mathrm{L}}=110 \Omega$,	See Figure 5		30	50	ns
tphZ	Output disable time from high level		$\mathrm{R}_{\mathrm{L}}=110 \Omega$,	See Figure 4	3	8	13	ns
tplZ	Output disable time from low level		$\mathrm{R}_{\mathrm{L}}=110 \Omega$,	See Figure 5	3	8	13	ns
tPDE	Differential-output enable time		$\begin{aligned} & R_{\mathrm{L} 1}=R_{\mathrm{L3}}=165 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=60 \mathrm{pF}, \end{aligned}$	$\mathrm{R}_{\mathrm{L} 2}=75 \Omega,$ See Figure 7	8	30	45	ns
tpDZ	Differential-output disable time				5	10	45	ns

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger Pulse skew is defined as the $\left|\mathrm{t}_{\mathrm{d}(\mathrm{ODH})}-\mathrm{t}_{\mathrm{d}(\mathrm{ODL})}\right|$ of each channel.
§ Skew limit is the maximum difference in propagation delay times between any two channels of one device and between any two devices. This parameter is applicable at one V_{CC} and operating temperature within the recommended operating conditions.

SYMBOL EQUIVALENTS

DATA-SHEET PARAMETER	EIA/TIA-422-B	RS-485
V_{O}	$\mathrm{V}_{\mathrm{Oa}}, \mathrm{V}_{\mathrm{ob}}$	$\mathrm{V}_{\mathrm{Oa}}, \mathrm{V}_{\mathrm{ob}}$
$\left\|\mathrm{V}_{\mathrm{OD} 1}\right\|$	V_{O}	V_{O}
$\left\|\mathrm{V}_{\mathrm{OD} 2}\right\|$	$\mathrm{V}_{\mathrm{t}}\left(\mathrm{R}_{\mathrm{L}}=100 \Omega\right)$	$\mathrm{V}_{\mathrm{t}}\left(\mathrm{R}_{\mathrm{L}}=54 \Omega\right)$
$\left\|\mathrm{V}_{\mathrm{OD} 3}\right\|$		$\mathrm{V}_{\mathrm{t}}($ Test Termination
Measurement 2$)$		

SN75ALS171, SN75ALS171A TRIPLE DIFFERENTIAL BUS TRANSCEIVERS

SLLS056D - AUGUST 1987 - REVISED SEPTEMBER 1995

RECEIVER SECTION

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP \dagger	MAX	UNIT
$\mathrm{V}_{\text {IT }+}$	Positive-going input threshold voltage	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$,	$\mathrm{I} \mathrm{O}=-0.4 \mathrm{~mA}$			0.3	V
VIT-	Negative-going input threshold voltage	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$,	$\mathrm{I} \mathrm{O}=8 \mathrm{~mA}$	-0.3 \ddagger			V
$\mathrm{V}_{\text {hys }}$	Hysteresis voltage ($\mathrm{V}_{\text {IT }+}-\mathrm{V}_{\text {IT-}}$)				60		mV
$\mathrm{V}_{\text {IK }}$	Enable-input clamp voltage	$\mathrm{I}=-18 \mathrm{~mA}$				-1.5	V
VOH	High-level output voltage	$\mathrm{V}_{\mathrm{ID}}=300 \mathrm{mV},$ See Figure 8	$\mathrm{IOH}=-400 \mu \mathrm{~A}$,	2.7			V
VOL	Low-level output voltage	$\mathrm{V}_{\mathrm{ID}}=-300 \mathrm{mV},$ See Figure 8	$\mathrm{IOL}=8 \mathrm{~mA},$			0.45	V
IOZ	High-impedance-state output current	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ to 2.4				± 20	$\mu \mathrm{A}$
4	Line input current	Other input $=0 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=12 \mathrm{~V}$			1	mA
	Line input current	See Note 4	$\mathrm{V}_{\mathrm{I}}=-7 \mathrm{~V}$			-0.8	mA
${ }^{\text {IIH }}$	High-level enable-input current	$\mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}$				60	$\mu \mathrm{A}$
IIL	Low-level enable-input current	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$				-300	$\mu \mathrm{A}$
r_{i}	Input resistance			12			$\mathrm{k} \Omega$
Ios	Short-circuit output current	$\mathrm{V}_{\text {ID }}=300 \mathrm{mV}$,	$\mathrm{V}_{\mathrm{O}}=0$	-15		-85	mA
		No load	Outputs enabled		69	90	mA
CC	Supply current	No load	Outputs disabled		57	78	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.
NOTE 4: This applies for both power on and off; refer to EIA Standard RS-485 for exact conditions.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature range

PARAMETER			TEST CONDITIONS	MIN	TYP†	MAX	UNIT
tPLH	Propagation delay time, low- to high-level output	ALS171	$\left\{\begin{array}{l} \mathrm{V}_{I D}=-1.5 \mathrm{~V} \text { to } 1.5 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \end{array}\right.$$\text { See Figure } 9$	9		19	ns
		ALS171A		11		16	
tPHL	Propagation delay time, high- to low-level output	ALS171		9		19	ns
		ALS171A		11		16	
tsk(p)	Pulse skew§		$\begin{aligned} & \mathrm{V}_{\mathrm{ID}}=-1.5 \mathrm{~V} \text { to } 1.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \text { See Figure } 9 \end{aligned}$		2	5	ns
$\mathrm{t}_{\text {sk(}}$ (lim)	Skew limit ${ }^{\text {I }}$	ALS171				10	ns
		ALS171A				5	
tPZH	Output enable time to high level		$C_{L}=15 \mathrm{pF},$ See Figure 10		7	14	ns
tPZL	Output enable time to low level				7	14	ns
tPHZ	Output disable time from high level		$C_{\mathrm{L}}=15 \mathrm{pF},$$\text { See Figure } 10$		20	35	ns
tplZ	Output disable time from low level				8	17	ns

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ Pulse skew is defined as the |tpLH-t ${ }^{-1}$ HL| of each channel.
I Skew limit is the maximum difference in propagation delay times between any two channels of one device and between any two devices. This parameter is applicable at one V_{CC} and operating temperature within the recommended operating conditions.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Driver V_{OD} and V_{OC}

Figure 2. Driver V_{OD}

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$, $\mathrm{Z}_{\mathrm{O}}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 3. Driver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$, $Z_{O}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 4. Driver Test Circuit and Voltage Waveforms

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$, $Z_{O}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 5. Driver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$, $\mathrm{Z}_{\mathrm{O}}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 6. Driver Test Circuit and Voltage Waveforms With Double-Differential-SCSI Termination for the Load

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, 50 \%$ duty $\mathrm{cycle}, \mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{tf}_{\mathrm{f}} \leq 6 \mathrm{~ns}$, $Z_{O}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 7. Driver Differential-Enable and Disable Times With a Double-SCSI Termination

PARAMETER MEASUREMENT INFORMATION

Figure 8. Receiver V_{OH} and V_{OL}

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}$, $\mathrm{tf}_{\mathrm{f}} \leq 6 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 9. Receiver Test Circuit and Voltage Waveforms

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 10. Receiver Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

Figure 11

DRIVER
LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT

Figure 12

DRIVER
DIFFERENTIAL OUTPUT VOLTAGE
vs
OUTPUT CURRENT

Figure 13

TYPICAL CHARACTERISTICS

RECEIVER
HIGH-LEVEL OUTPUT VOLTAGE vs
HIGH-LEVEL OUTPUT CURRENT

Figure 14
RECEIVER
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT

Figure 16

RECEIVER
HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE

Figure 15

RECEIVER
 LOW-LEVEL OUTPUT VOLTAGE vs
 FREE-AIR TEMPERATURE

Figure 17

TYPICAL CHARACTERISTICS

Figure 18

> RECEIVER OUTPUT VOLTAGE vs

ENABLE VOLTAGE

Figure 19

APPLICATION INFORMATION

NOTE A: The line should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible.

Figure 20. Typical Application Circuit

Figure 21. Typical Differential SCSI Application Clrcuit

APPLICATION INFORMATION

Figure 22. Typical Differential SCSI Bus Interface Implementation

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

