SLLS028G - AUGUST 1987 - REVISED JUNE 1998

- Suitable for IEEE Standard 896 Applications†
- SN75ALS056 is an Octal Transceiver
- SN75ALS057 is a Quad Transceiver
- High-Speed Advanced Low-Power Schottky (ALS) Circuitry
- Low Power Dissipation:52.5 mW/Channel Max
- High-Impedance pnp Inputs
- Logic-Level 1-V Bus Swing Reduces Power Consumption
- Trapezoidal Bus Output Waveform Reduces Noise Coupling to Adjacent Lines
- Power-Up/Power-Down Protection (Glitch Free)
- Open-Collector Driver Outputs Allow Wired-OR Connections
- Designed to Be a Faster, Lower-Power Functional Equivalent of National DS3896, DS3897

description

The SN75ALS056 is an eight-channel, monolithic, high-speed, advanced low-power Schottky (ALS) device designed for two-way data communication in a densely populated backplane. The SN75ALS057 is a four-channel version with independent driver-input (Dn) and receiver-output (Rn) pins and a separate driver disable for each driver (En).

SN75ALS056...DW OR N PACKAGE (TOP VIEW) 20 B1 A1 L A2 🛮 2 19 B2 АЗ 🛮 з 18 B3 A4 🛮 4 17 B4 16 T GND V_{CC} [] 5 A5 Π 6 15 B5 A6 🛮 7 14**∏** B6 A7 🛮 8 13 B7 12 B8 A8 [9 10 $\overline{\mathsf{cs}}$ 11 T/R

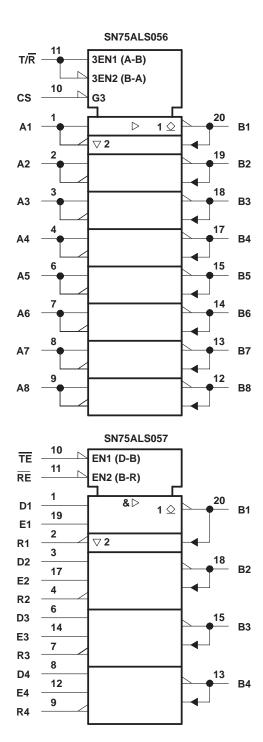
SN75ALS057 . . . DW OR N PACKAGE (TOP VIEW) 20 B1 D1 Г R1 [2 19 TE1 D2 🛛 3 18**∏** B2 R2 🛛 4 17 E2 16 GND V_{CC} 🛭 5 D3 ¶ 6 15 B3 R3 [] 7 14 E3 D4 🛮 8 13 B4 R4 🛮 9 12 E4

RE

TE [] 10

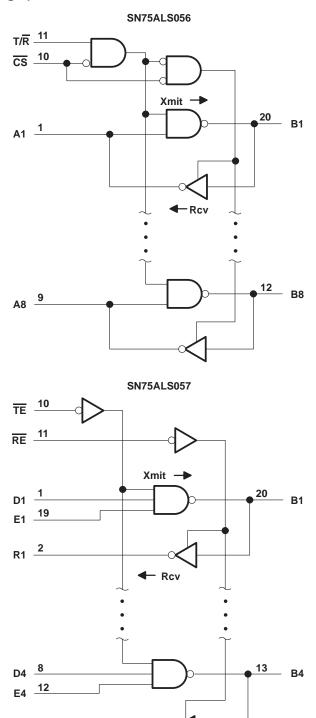
These transceivers feature open-collector driver outputs with series Schottky diodes to reduce capacitive loading to the bus. By using a 2-V pullup termination on the bus, the output signal swing is approximately 1 V, which reduces the power necessary to drive the bus load capacitance. The driver outputs generate trapezoidal waveforms that reduce crosstalk between channels. The drivers are capable of driving an equivalent dc load as low as 18.5Ω . The receivers have internal low-pass filters to further improve noise immunity.

The SN75ALS056 and SN75ALS057 are characterized for operation from 0°C to 70°C.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

† The transceivers are suitable for IEEE Standard 896 applications to the extent of the operating conditions and characteristics specified in this data sheet.


logic symbol†

[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

 $\ensuremath{^{\dagger}}$ These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SLLS028G - AUGUST 1987 - REVISED JUNE 1998

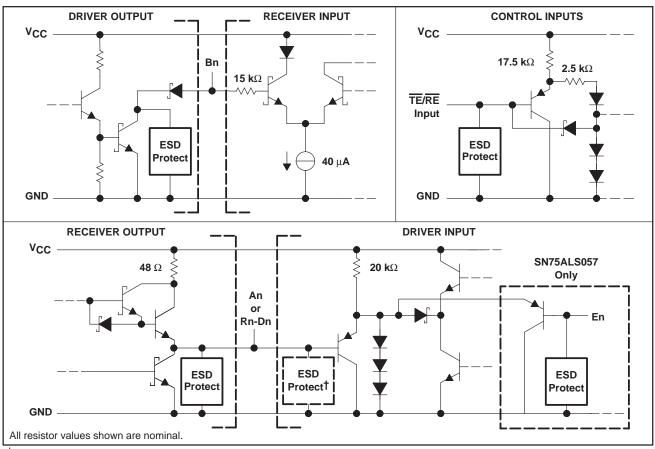
Function Tables

SN75ALS056 TRANSMIT/RECEIVE

CONT	ROLS	CHANNELS		
CS	T/R	$A \leftrightarrow B$		
L	Н	T(A	B)	
L	L	R(B	A)	
Н	Χ)	

SN75ALS057 TRANSMIT/RECEIVE

C	ONTROL	.S	CHANNELS				
TE	RE	En	D	D B B			
L	L	L)	F	₹	
L	L	Н	7	Γ	F	۲	
L	Н	L	[)	[
L	Н	Н	1	Γ	[
Н	L	Χ	[)	F	₹	
Н	Н	Χ))	


H = high level, L = low level, R = receive, T = transmit,

D = disable, X = irrelevant

Direction of data transmission is from An to Bn for the SN75ALS056 and from Dn to Bn for the SN75ALS057. Direction of data reception is from Bn to An for the SN75ALS056 and from Bn to Rn for the SN75ALS057. Data transfer is inverting in both directions.

SLLS028G - AUGUST 1987 - REVISED JUNE 1998

schematics of inputs and outputs

[†] Additional ESD protection is on the SN75ALS057, which has separate receiver-output and driver-input pins.

absolute maximum ratings over operating free-air temperature (unless otherwise noted)‡

Supply voltage, V _{CC} (see Note 1)	6 V
Control input voltage, V _I	
Driver input voltage, V _I	.5 V
Driver output voltage, V _O	.5 V
Receiver input voltage, V _I	.5 V
Receiver output voltage, VO	.5 V
Continuous total power dissipation See Dissipation Rating Ta	able
Storage temperature range, T _{stq} –65°C to 15	0°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DW or N package	O°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: Voltage values are with respect to network ground terminal.

SLLS028G - AUGUST 1987 - REVISED JUNE 1998

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \leq 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
DW	1025 mW	8.2 mW/°C	656 mW	_
N	1150 mW	9.2 mW/°C	736 mW	_

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
High-level driver and control input voltage, VIH	2			V
Low-level driver and control input voltage, V _{IL}			0.8	V
Bus termination voltage	1.9		2.1	V
Operating free-air temperature, T _A	0		70	°C

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	DADAMETED		TEST CONDITIONST	SN75ALS056			
	PARAMETER		TEST CONDITIONS†	MIN	TYP [†]	MAX	UNIT
VIK	Input clamp voltage at An, T/R, or CS		I _I = -18 mA			-1.5	V
VIT	Receiver input threshold v	oltage at Bn		1.405		1.69	V
Vон	High level output voltage at An		Bn at 1.2 V, CS at 0.8 V, T/ R at 0.8V, I _{OH} = – 400 μA	2.4			V
	An	Bn at 2 V , CS at 0.8 V, T/ R at 0.8 V, I _{OL} = 16 mA			0.5		
VOL	Low-level output voltage	Bn	An at 2 V, \overline{CS} at 0.8 V, T/ \overline{R} at 2 V, V _L = 2 V, R _L =18.5 Ω , See Figure 1	0.75		1.2	V
		An, T/R or CS	$V_I = V_{CC}$			40	
lін	High-level input current	Bn	V _I = 2 V, V _{CC} = 0 or 5.25 V, An at 0.8 V, T/R at 0.8 V			100	μΑ
Ι _Ι L	Low level input current at An, T/R, or CS		V _I = 0.4 V			-400	μΑ
los	Short-circuit output current at An		An at 0, Bn at 1.2 V, CS at 0.8 V, T/R at 0.8 V	-40		-120	mA
Icc	Supply current					75	mA
C _{O(B)}	Driver output capacitance				4.5		pF

[†] Typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

SLLS028G - AUGUST 1987 - REVISED JUNE 1998

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	DADAMETED		TEST COMPITIONS	SN75ALS057			UNIT
	PARAMETER		TEST CONDITIONS	MIN	TYP [†]	MAX	UNII
VIK	Input clamp voltage at Dn, En, TE, or RE		I _I = -18 mA			-1.5	V
VIT	Receiver input threshold voltage	at Bn		1.41		1.69	V
Vон	High-level output voltage at Rn		Bn at 1.2 V, RE at 0.8 V, I _{OH} = –400 μA	2.4			V
			Bn at 2 V, RE at 0.8 V, I _{OL} = 16 mA			0.5	
VOL	Low-level output voltage	Bn	$\frac{Dn}{TE}$ at 2 V, En at 2 V, $\frac{Dn}{TE}$ at 0.8 V, V _L = 2 V, R _L = 18.5 Ω, See Figure 1	0.75		1.2	V
		Dn, En, TE, or RE	VI = VCC			40	
ΊΗ	High-level input current	Bn	V _I = 2 V, V _{CC} = 0 or 5.25 V, <u>Dn</u> at 0.8 V, En at 0.8 V, <u>TE</u> at 0.8 V			100	μА
Ι _Ι L	Low-level input current at Dn, En, TE, or RE		V _I = 0.4 V			-400	μΑ
los	Short-circuit output current at Rn		Rn at 0, Bn at 1.2 V, RE at 0.8 V	-40		-120	mA
Icc	Supply current					40	mA
C _{O(B)}	Driver output capacitance				4.5	·	pF

[†] Typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER		TO	TEST CONDITIONS	SN75ALS056 DRIVER			UNIT
		(INPUT)	(OUTPUT)		MIN	TYP [†]	MAX	
tPLH1	Propagation delay time, low-to-high-level output	CS	Bn	An and T/\overline{R} at 2 V, $V_{L} = 2$ V, $R_{1} = 18 \Omega_{1}$, $C_{1} = 30 \text{ pF}$,			24	20
^t PHL1	Propagation delay time, high-to-low-level output	C3	DII	R _L 2 not connected, See Figure 2			20	ns
tPLH2	Propagation delay time, low-to-high-level output	An	Bn	$\overline{\text{CS}}$ at 0.8 V, $\overline{\text{T/R}}$ at 2 V, V _L = 2 V, R _L 1 = 18 Ω ,			19	2
tPHL2	Propagation delay time high-to-low-level output	All	БП	R_L 2 not connected, C_L = 30 pF, See Figure 2,			18	ns
tPLH3	Propagation delay time, low-to-high-level output		Bn	$\begin{split} &V_{I}(An)=5 \text{ V, CS at } 0.8 \text{ V,} \\ &R_{L}1=18 \ \Omega, C_{L}=30 \text{ pF,} \\ &R_{L}2 \text{ not connected, } V_{L}=2 \text{ V,} \\ &\text{See Figure 3,} \end{split}$			25	20
tPHL3	Propagation delay time, high-to-low-level output	T/R	ы				35	ns
tTLH	Transition time, low-to-high-level output	An	Bn	CS at 0.8 V, T/R at 2 V, VL = 2 V, CL = 30 pF,	1	3	11	ns
tTHL	Transition time, high-to-low-level output	All		$R_L^{-1} = 18 \Omega$, R_L^{-2} not connected, See Figure 2	1	3	6	113

[†] Typical values are at V_{CC} = 5 V, T_A = 25°C

SLLS028G - AUGUST 1987 - REVISED JUNE 1998

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN75A RECE		UNIT
		(1141 01)	(0011 01)		MIN	MAX	
^t PLH4	Propagation delay time, low-to-high-level output	Bn	An	$\overline{\text{CS}}$ at 0.8 V, T/ $\overline{\text{R}}$ at 0.8 V, R _I 1 = 390 Ω,		18	20
^t PHL4	Propagation delay time, high-to-low-level output	DII	An	$R_L 2 = 1.6 \text{ k}\Omega$, $C_L = 30 \text{ pF}$, See Figure 4		18	ns
^t PLZ1	Output disable time from low level	T/R	An	$\overline{\text{CS}}$ at 0.8 V, $V_{\text{I}(Bn)}$ = 2 V, V_{L} = 5 V, R_{L} 1 = 390 Ω , R_{L} 2 not connected, C_{L} = 15 pF, See Figure 3		20	ns
^t PZL1	Output enable time to low level	T/R	An	$\overline{\text{CS}}$ at 0.8 V, V _I (Bn) = 2 V, V _L = 5 V, R _L 1 = 390 Ω, R _L 2 = 1.6 kΩ, C _L = 30 pF, See Figure 3		40	ns
^t PHZ1	Output disable time from high level	T/R	An	$\overline{\text{CS}}$ at 0.8 V, $V_{I(Bn)} = 0$, $V_{L} = 0$, $R_{L}1 = 390 \Omega$, $R_{L}2$ not connected, $C_{L} = 15 \text{ pF}$, See Figure 3		17	ns
^t PZH1	Output enable time to high level	T/R	An	$\overline{\text{CS}}$ at 0.8 V, VI _(Bn) = 0, V _L = 0, R _L 1 not connected, R _L 2 = 1.6 k Ω , C _L = 30 pF, See Figure 3		15	ns
^t PLZ2	Output disable time from low level	<u>cs</u>	An	Bn at 2 V, T/ \overline{R} at 0.8 V, C _L = 5 pF, V _L = 5 V, R _L 1 = 390 Ω , R _L 2 not connected, See Figure 5		18	ns
^t PZL2	Output enable time to low level	cs	An	Bn at 2 V, T/ \overline{R} at 0.8 V, C _L = 30 pF, V _L = 5 V, R _L 1 = 390 Ω , R _L 2 = 1.6 k Ω , See Figure 5		15	ns
^t PHZ2	Output disable time from high level	CS	An	Bn at 0.8 V, T/\overline{R} at 0.8 V, $C_L = 5$ pF, $V_L = 0$, $R_L 1 = 390 \Omega$, $R_L 2$ not connected, See Figure 5		8	ns
^t PZH2	Output enable time to high level	CS	An	Bn at 0.8 V, T/\overline{R} at 0.8 V, $C_L = 30$ pF, $V_L = 0$, $R_L 1$ not connected, $R_L 2 = 1.6$ k Ω , See Figure 5		17	ns
tw(NR)	Receiver noise rejection pulse duration	Bn	An	$\overline{\text{CS}}$ at 0.8 V, T/ $\overline{\text{R}}$ at 0.8 V, R _L 1 = 390 Ω, R _L 2 = 1.6 kΩ, C _L = 30 pF, V _L = 5 V, See Figure 6	3		ns

SLLS028G - AUGUST 1987 - REVISED JUNE 1998

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER		TO (OUTPUT)	TEST CONDITIONS	SN	UNIT		
		(INPUT)	(001701)	MIN TYP† M	MAX			
^t PLH1	Propagation delay time, low-to-high-level output	〒	Bn	Dn, En, \overline{RE} at 2 V, $V_L = 2 V$,			24	ns
tPHL1	Propagation delay time, high-to-low-level output	16	ы	R _L 2 not connected, R _L 1 = 18 Ω , See Figure 2, C _L = 30 pF			20	115
tPLH2	Propagation delay time, low-to-high-level output	Dn or En	Bn	$\overline{\text{TE}}$ at 0.8 V, $\overline{\text{RE}}$ at 2 V, V _L = 2 V, R _L 1 = 18 Ω , R _L 2 not connected,C _L = 30 pF, See Figure 2			19	20
tPHL2	Propagation delay time, high-to-low-level output	DIT OF EIT	ы				18	ns
tTLH	Transition time, low-to-high-level output	Dn or En		$\overline{\text{RE}}$ at 2 V, V _L = 2 V, $\overline{\text{TE}}$ at 0.8 V, R _L 1 = 18 Ω ,, R _L 2 not connected, C _L = 30 pF, See Figure 2	1	3	11	20
tTHL	Transition time, high-to-low-level output	Dn or En			1	3	6	ns

[†] Typical values are at V_{CC} = 5 V, T_A = 25°C.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

	PARAMETER	FROM (INPUT)	TEST CONDITIONS		SN75ALS057 RECEIVER		UNIT
		(1141-01)	(0011-01)			MAX	
^t PLH4	Propagation delay time, low-to-high-level output	Bn	Rn	RE at 0.8 V, TE at 2 V, V _L = 5 V,		18	
^t PHL4	Propagation delay time, high-to-low-level output	DII	KII	R _L 1 = 390 Ω,, R _L 2 = 1.6 kΩ,, C _L = 30 pF, See Figure 4		18	ns
t _{PLZ2}	Output disable time from low level	RE	Rn	Bn at 2 V, $\overline{\text{TE}}$ at 2 V, $V_L = 5$ V, $C_L = 5$ pF, $R_L = 390 \Omega$, $R_L = 390 \Omega$, $R_L = 390 \Omega$		18	ns
t _{PZL2}	Output enable time to low level	RE	Rn	Bn at 2 V, $\overline{\text{TE}}$ at 2 V, V_L = 5 V, C_L = 30 pF, R_L 1 = 390 Ω , R_L 2 = 1.6 k Ω , See Figure 5		15	ns
tPHZ2	Output disable time from high level	RE	Rn	Bn at 0.8 V, $\overline{\text{TE}}$ at 2 V, $V_L = 0$, $C_L = 5$ pF, $R_L 1 = 390 \Omega$, $R_L 2$ not connected, See Figure 5		17	ns
^t PZH2	Output enable time to high level	RE	Rn	Bn at 0.8 V, $\overline{\text{TE}}$ at 2 V, $V_L = 0$, $C_L = 30$ pF, $R_L 1$ not connected, $R_L 2 = 1.6$ k Ω , See Figure 5		17	ns
tw(NR)	Receiver noise rejection pulse duration	Bn	Rn	$\overline{\text{TE}}$ at 2 V, $\overline{\text{RE}}$ at 0.8 V, V _L = 0, R _L 1 = 390 Ω, R _L 2 = 1.6 kΩ, C _L = 30 pF, See Figure 6	3		ns

SLLS028G - AUGUST 1987 - REVISED JUNE 1998

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN75AL DRIVER RECEI	PLUS	UNIT
					MIN	MAX	
tPLH6	Propagation delay time, low-to-high-level output	Dn	Rn	$\overline{\text{RE}}$ at 0.8 V, $\overline{\text{TE}}$ at 0.8 V, $R_L 1 = 390 \Omega$,		40	ns
tPHL6	Propagation delay time, high-to-low-level output		INII	R _L 2 = 1.6 kΩ,, C _L = 30 pF, See Figure 7		40	115

PARAMETER MEASUREMENT INFORMATION

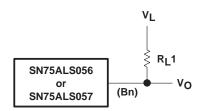
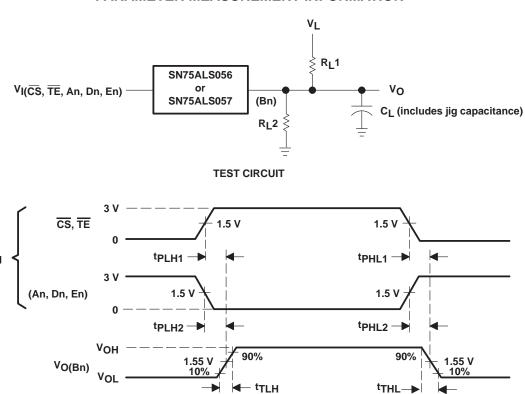
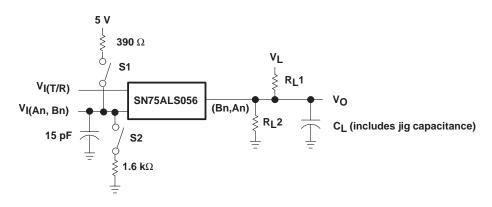
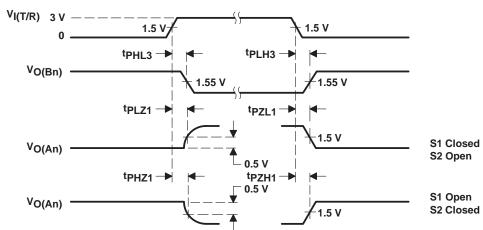



Figure 1. Driver Low-Level-Output-Voltage Test Circuit

PARAMETER MEASUREMENT INFORMATION

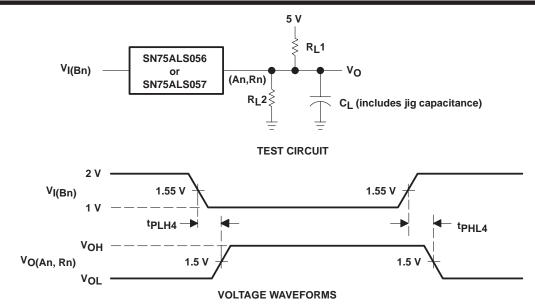


NOTE A: $t_f = t_f \le 5$ ns from 10% to 90%


Figure 2. Driver Test Circuit and Voltage Waveforms

VOLTAGE WAVEFORMS

PARAMETER MEASUREMENT INFORMATION


TEST CIRCUIT

VOLTAGE WAVEFORMS

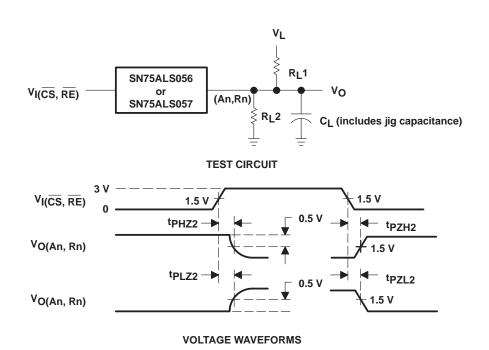
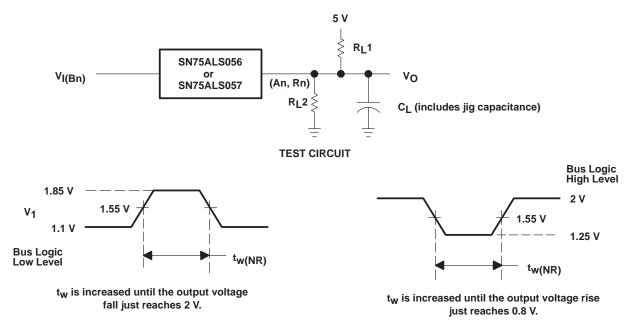

NOTE A: $t_{\Gamma} = t_{f} \le 5$ ns from 10% to 90%

Figure 3. Propagation Delay From T/R to An or Bn Test Circuit and Voltage Waveforms

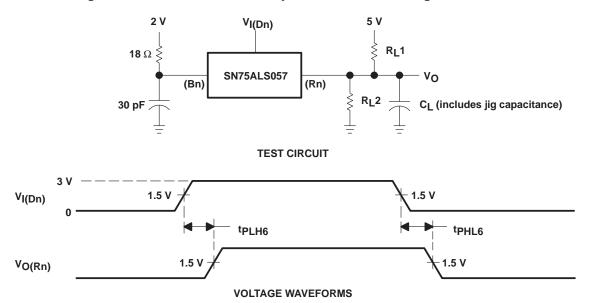
NOTE A: $t_r = t_f \le 5 \text{ ns from } 10\% \text{ to } 90\%$

Figure 4. Receiver Test Circuit and Voltage Waveforms



NOTE A: $t_r = t_f \le 5$ ns from 10% to 90%

Figure 5. Propagation Delay From $\overline{\text{CS}}$ to An or $\overline{\text{RE}}$ to Rn Test Circuit and Voltage Waveforms


PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTE A: $t_r = t_f \le 5$ ns from 10% to 90%

Figure 6. Receiver Noise-Immunity Test Circuit and Voltage Waveforms

NOTE A: $t_{\Gamma} = t_{f} \le 5$ ns from 10% to 90%

Figure 7. Driver Plus Receiver Delay-Times Test Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated