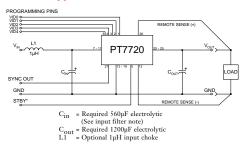

PT7720

Series

17 AMP 12V INPUT "BIG-HAMMER II" PRO-**GRAMMABLE ISR**

Application Notes Mechanical Outline Product Selector Guide

The PT7720 series is a new +12V input, 17A output, high-performance Integrated Switching Regulator (ISR) housed in a 27pin SIP package. The 17A capability allows easy integration of the latest high-speed, low-voltage µPs and bus drivers into +12V distributed power systems.


The PT7720 series has been designed to work in parallel with one or more of the PT7748 current boosters for increased I_{out}

in increments of 17A.

The output voltage of the PT7721 can be easily programmed from 1.3V to 3.5V with a 5 bit input compatible with Intel's Pentium® IIProcessor. A differential remote sense is also provided which automatically compensates for any voltage drop from the ISR to the load.

1200µF of output capacitance is required for proper operation.

Standard Application

Pin-Out Information

Pin	Function
1	VID0
2	VID1
3	VID2
4	VID3
5	STBY* - Stand-by
6	VID4
7	V _{in}
8	V _{in}
9	V _{in}
10	V _{in}
11	V _{in}
12	Remote Sense Gnd
13	GND
14	GND

Pin Function 15 GND GND GND 18 GND 19 GND V_{out}

$\overline{V_{out}}$ \overline{V}_{out} 23 $\overline{V}_{\underline{out}}$ 24 Vout Remote Sense V_{out} Sync Out

For STBY* pin: open = output enabled ground = output disabled.

Features

- +12V bus input
- 5-bit Programmable: 1.3V to 3.5V or 4.5V to 7.6V
- High Efficiency
- Differential Remote Sense
- 27-pin SIP Package
- Parallelable with PT7748 17A current boosters

Specifications

Characteristics			PT7720 SERIES			Units
(T _a = 25°C unless noted)	Symbols	Conditions	Min Typ Max			
Output Current	I_{o}	T_a = +60°C, 200 LFM, pkg N, V_o ≤ 5V T_a = +25°C, natural convection, V_o ≤ 5V	0.1* 0.1*	_	17** 17**	A A
Output Power	P_{o}	T_a = +60°C, 200 LFM, pkg N, V_o ≥ 5V T_a = +25°C, natural convection, V_o ≥ 5V	=	=	85 85	Watts Watts
Input Voltage Range	V_{in}	$0.1A \le I_o \le 17A$	11.0	_	14.0	V
Output Voltage Tolerance	ΔV_{o}	$V_{\rm in} = +12 {\rm V}, I_{\rm o} = 17 {\rm A} \ 0^{\circ}{\rm C} \le T_{\rm a} \le +60^{\circ}{\rm C} \ (PT7721)$	Vo-0.03	_ ±1.0%	V ₀ +0.03 ±2.0%	V % Vo
Line Regulation	Reg _{line}	$11V \le V_{in} \le 14V$, $I_o = 17A$ (Using remote sense)	_	±5	±10	mV
Load Regulation	Reg _{load}	V_{in} = +12V, 0.1 \leq I _o \leq 17A (Using remote sense)	_	±5	±10	mV
V _o Ripple/Noise	V_n	$V_{in} = +12V, I_o = 17A$ (PT7721) (PT7722)	=	50 100	_	mVpp mVpp
Transient Response with C _{out} = 1200μF	$egin{array}{c} t_{tr} \ V_{os} \end{array}$	I_{o} step between 7.5A and 15A V_{o} over/undershoot	=	100 200	_	μSec mV
Efficiency	η	$\begin{array}{c} V_{in} = +12 V, I_o = 10 A & V_o = 5.0 V \\ V_o = 3.3 V \\ V_o = 2.5 V \\ V_o = 1.5 V \end{array}$		90 88 85 78		% % % %
Switching Frequency	f_0	$\begin{array}{l} 11 V \leq V_{\rm in} \leq 14 V \\ 0.1 A \leq I_{\rm o} \leq 17 A \end{array}$	300	350	400	kHz
Absolute Maximum Operating Temperature Range	Ta	_	0	_	+85	°C
Recommended Operating Temperature Range	Ta	Forced Air Flow = 200 LFM At V _{in} = 12V, I _o = 12A	0	_	+65***	°C
Storage Temperature	T_s	_	-40	_	+125	°C
Mechanical Shock		Per Mil-STD-883D, Method 2002.3 , 1 msec, Half Sine, mounted to a fixture	_	TBD	_	G's
Mechanical Vibration		Per Mil-STD-883D, Method 2007.2, 20-2000 Hz, Soldered in a PC board	_	TBD	_	G's
Weight	_	Vertical/Horizontal	_	51/64	_	grams

ISR-will operate down to no load with reduced specifications. Please note that this product is not short-circuit protected.
The PT7720 series can be easily paralleled with one or more of the PT7748 Current Boosters to provide increased output current in increments of 17A.

*** See Safe Operating Area chart.

Output Capacitors: The PT7720 series requires a minimum output capacitance of 1200µF for proper operation. Do not use Oscon type capacitors. The maximum allowable output capacitance Is (57,000 ÷ Vout)µF, or 15,000µF, whichever is less.

Input Filter: An input inductor is optional for most applications. The input inductor must be sized to bandle 7ADC with a typical value of 1µH. The input capacitance must be rated for a minimum of 4.0 Arms of ripple current when operated at maximum output current and maximum output voltage. Contact an applications engineer for input capacitor selection for applications at other output voltages and output currents.

DATA SHEETS

T7720

Series

Programming Information

				PT7	721	PT7722		
VID3	VID2	VID1	VIDO	VID4=1 Vout	VID4=0 Vout	VID4=1 Vout	VID4=0 Vout	
1	1	1	1	2.0V	1.30V	4.5V	6.1V	
1	1	1	0	2.1V	1.35V	4.6V	6.2V	
1	1	0	1	2.2V	1.40V	4.7V	6.3V	
1	1	0	0	2.3V	1.45V	4.8V	6.4V	
1	0	1	1	2.4V	1.50V	4.9V	6.5V	
1	0	1	0	2.5V	1.55V	5.0V	6.6V	
1	0	0	1	2.6V	1.60V	5.1V	6.7V	
1	0	0	0	2.7V	1.65V	5.2V	6.8V	
0	1	1	1	2.8V	1.70V	5.3V	6.9V	
0	1	1	0	2.9V	1.75V	5.4V	7.0V	
0	1	0	1	3.0V	1.80V	5.5V	7.1V	
0	1	0	0	3.1V	1.85V	5.6V	7.2V	
0	0	1	1	3.2V	1.90V	5.7V	7.3V	
0	0	1	0	3.3V	1.95V	5.8V	7.4V	
0	0	0	1	3.4V	2.00V	5.9V	7.5V	
0	0	0	0	3.5V	2.05V	6.0V	7.6V	

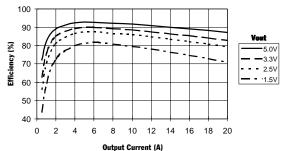
Logic 0 = Pin 12 potential (remote sense gnd) Logic 1 = Open circuit (no pull-up resistors)

VID3 and VID4 may not be changed while the unit is operating.

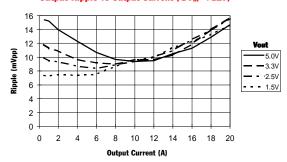
Ordering Information

PT7721 = 1.3 to 3.5 Volts $PT7722 \square = 4.5 \text{ to } 7.6 \text{ Volts}$

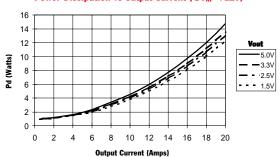
(For dimensions and PC board layout, see Package Styles 1000 and 1010.)

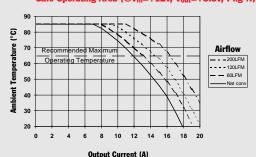

PT Series Suffix (PT1234X)

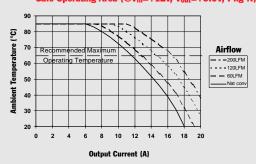
Case/Pin Configura


Comiguration	
Vertical Through-Hole	N
Horizontal Through-Hole	A
Horizontal Surface Mount	C

C H A R A C T E R I S T I C DATA


Efficiency vs Output Current (@Vin=+12V) 100


Output Ripple vs Output Current (@Vin=+12V)


Power Dissipation vs Output Current ($@V_{in}=+12V$)

Safe Operating Area (@Vin=+12V, Vout=+3.3V, Pkg N)

Safe Operating Area (@V_{in}=+12V, V_{out}=+5.0V, Pkg N)

Note: SOA curves represent operating conditions at which internal components are at or below manufacturer's maximum rated operating temperatures.

PT7720 Series

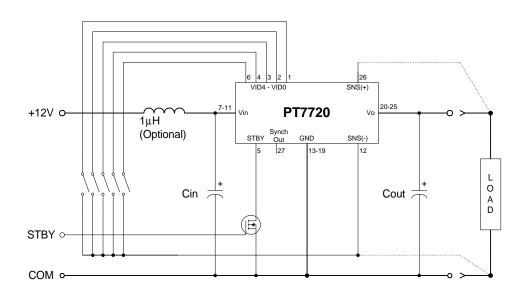
More Application Notes

Pin-Coded Output Voltage Adjustment on the "Big Hammer II" Series ISRs

Power Trends PT7720 series ISRs incorporate pin-coded voltage control to adjust the ouput voltage. The control pins are identified VID0 - VID4 (pins 1, 2, 3, 4, & 6) respectively. When the control pins are left open-circuit, the ISR output will regulate at its factory trimmed output voltage. Each pin is internally connected to a precision resistor, which when grounded changes the output voltage by a set amount. By selectively grounding VID0 -VID4, the output voltage of each ISR in the PT7720 series ISRs can be programmed in incremental steps over its specified output voltage range. The output voltage ranges offered by these regulators provide a convenient method of output voltage selection for many applications. In addition, the program code and output voltage range of the PT7721 model ISR is compatible with the voltage ID specification defined by Intel Corporation for voltage regulator modules (VRMs) used to power Pentium® microprocessors. Refer to Figure 1 below for the connection schematic, and the PT7720 Data Sheet for the appropriate programming code information.

Notes:

- 1. The programming convention is as follows:-
 - Connect to pin12 (Remote Sense Ground). Logic 0: Logic 1: Open circuit/open drain (See notes 2, & 4)
- 2. Do not connect pull-up resistors to the voltage programming pins.
- 3. To minimize output voltage error, always use pin 12 (Remote Sense Ground) as the logic "0" reference. While the regular ground (pins 13-19) can also be used for program-


ming, doing so will degrade the load reglation of the prod-

4. If active devices are used to ground the voltage control pins, low-level open drain MOSFET devices should be used over bipolar transistors. The inherent $V_{ce}(\text{sat})$ in bipolar devices introduces errors in the device's internal divider network. Discrete transistors such as the BSS138, 2N7002, IRLML2402, or the 74C906 hex open-drain buffer are examples of appropriate devices.

Active Voltage Programming:

Special precautions should be taken when making changes to the voltage control progam code while the unit is powered. It is highly recommended that the ISR be either powered down or held in standby. Changes made to the program code while V_{out} is enabled induces high current transients through the device. This is the result of the electrolytic output capacitors being either charged or discharged to the new output voltage set-point. The transient current can be minimized by making only incremental changes to the binary code, i.e. one LSB at a time. A minimum of 100µs settling time between each program state is also recommended. Making non-incremental changes to VID3 and VID4 with the output enabled is discouraged. If they are changed, the transients induced can overstress the device resulting in a permanent drop in efficiency. If the use of active devices prevents the program code being asserted prior to power-up, pull pin 5 (STBY) to the device GND during the period that the input voltage is applied to Vin. Releasing pin 5 will then allow the device output to execute a soft-start power-up to the programmed voltage.

Figure 1

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated