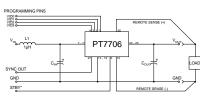
Revised 7/15/98

Series **PT7706**

18 AMP "BIG-HAMMER" PROGRAMMABLE INTEGRATED SWITCHING REGULATOR

The PT7706 is a new series of high-performance, 18 Amp Integrated Switching Regulators (ISRs) housed in a 27-pin SIP package. The 18A capability allows easy integration of the latest high-speed, low-voltage µPs, DSPs, ASICs, and bus drivers into existing 3.3V systems.


The PT7706 series has been designed to work in parallel with one or more of the PT7749 - 18A current boosters for increased Iout in increments of 18A.

The output voltage of the PT7706 can be easily programmed with a 4 bit input compatible with Intel's Pentium® II Processor. A differential remote sense is also provided which automatically compensates for any voltage drop from the ISR to the load.

1200µF of output capacitance are required for proper operation.

Standard Application

mmmmmm

Cin = Required 1200µF electrolytic C_{out} = Required 1200µF electrolytic L1 = Optional 1µH input choke

Pin-Out Information				
Pin	Function			
1	VID0			
2	VID1			
3	VID2			
4	VID3			
5	STBY* - Stand-by			
6	Do not connect			
7	Vin			
8	Vin			
9	Vin			

GND 14 GND

10 V_{in}

11

12

15

16

17 GND

18

Vin

GND 13

GND

Pin Function Pin Function 19 GND 20 Remote Sense Gnd 21 22 23 24 25 26 27

Vout

Vout

 V_{out}

Vout

 \mathbf{V}_{out}

 $\mathrm{V}_{\mathrm{out}}$

Remote Sense Vout

Sync Out

GND For STBY* pin; open = output enabled; ground = output disabled.

Specifications

Characteristics			PT7706 S	PT7706 SERIES		
$(T_a = 25^{\circ}C \text{ unless noted})$	Symbols	Conditions	Min	Тур	Max	Units
Output Current	Io	$T_a = +60^{\circ}C$, 200 LFM, pkg N $T_a = +25^{\circ}C$, natural convection	0.1^{*} 0.1^{*}	=	18** 15**	A A
Input Voltage Range	Vin	$0.1A \le I_o \le 15A$	3.1***	_	3.6	V
Output Voltage Tolerance	ΔV_{o}	$V_{in} = +3.3V, I_o = 18A$ 0°C $\leq T_a \leq +65$ °C	Vo-0.03	-	Vo+0.03	V
Line Regulation	Regline	$3.1\mathrm{V} \leq \mathrm{V_{in}} \leq 3.6\mathrm{V}, \mathrm{I_o}$ = 18A	_	±10	_	mV
Load Regulation	Regload	V_{in} = +3.3V, 0.1 \leq I _o \leq 18A		±10	_	mV
V _o Ripple/Noise	Vn	$V_{in} = +3.3V, I_o = 18A$	_	50	_	mV
Transient Response with C _{out} = 1200µF	$t_{tr} V_{os}$	I _o step between 9A and 18A V _o over/undershoot	_	100 200	_	μSec mV
Efficiency	η	$V_{in} = +3.3V, I_o = 10A$ $V_o = 1.8V$ $V_o = 1.5V$	_	79 77	_	% %
Switching Frequency	$f_{ m o}$	$\begin{array}{l} 3.1\mathrm{V} \leq \mathrm{V_{in}} \leq 3.6\mathrm{V} \\ 0.1\mathrm{A} \leq \mathrm{I_o} \leq 18\mathrm{A} \end{array}$	650	700	750	kHz
Absolute Maximum Operating Temperature Range	Ta	_	0	-	+85	°C
Recommended Operating Temperature Range	Та	Forced Air Flow = 200 LFM Over V _{in and} I _o Ranges	0	-	+65****	°C
Storage Temperature	Ts	_	-40	_	+125	°C
Mechanical Shock		Per Mil-STD-883D, Method 2002.3 1 msec, Half Sine, mounted to a fixture	_	500	_	G's
Mechanical Vibration		Per Mil-STD-883D, Method 2007.2, 20-2000 Hz, Soldered in a PC board	_	10	_	G's
Weight	_	Vertical/Horizontal	_	31/41	_	grams

* ISR-will operate down to no load with reduced specifications. Please note that this product is not short-circuit protected.

The PT7706 series can be easily paralleled with one or more of the PT7749 Current Boosters to provide increased output current in increments of 18A. * The minimum input voltage is 3.1V or V_{out}+1.2V, whichever is greater. ****See SOA curves.

Output Capacitors: The PT7706 series requires a minimum ouput capacitance of 1200µF for proper operation. Do not use Oscon type capacitors. The maximum allowable output capacitance is 15,000µF.

Input Filter: An input filter is optional for most applications. The input inductor must be sized to bandle 18ADC with a typical value of 1μ H. The input capacitance must be rated for a minimum of 1.3Arms of ripple current. For transient or dynamic load applications, additional capacitance may be required.

Application Notes Mechanical Outline Product Selector Guide

PT7706 Series

Features

- +3.3V input
- 4-bit Programmable: 1.3V to 2.05V@18A
- High Efficiency
 Input Voltage Range: 3.1V to 3.6V
- Differential Remote Sense
- 27-pin SIP Package
- Parallelable with PT7749 18A "Current Boosters"

Programming Information

VID3	VIDZ	VIDT	VIDU	vout
1	1	1	1	1.30V
1	1	1	0	1.35V
1	1	0	1	1.40V
1	1	0	0	1.45V
1	0	1	1	1.50V
1	0	1	0	1.55V
1	0	0	1	1.60V
1	0	0	0	1.65V
0	1	1	1	1.70V
0	1	1	0	1.75V
0	1	0	1	1.80V
0	1	0	0	1.85V
0	0	1	1	1.90V
0	0	1	0	1.95V
0	0	0	1	2.00V

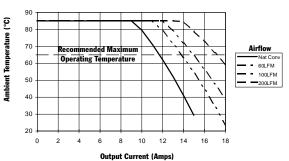
Ordering Information

PT7706 = 1.3 to 2.05 Volts

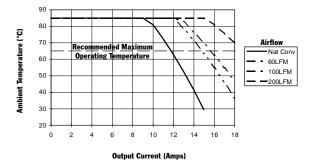
(For dimensions and PC board layout, see Package Styles 800 and 810.)

PT Series Suffix (PT1234X)

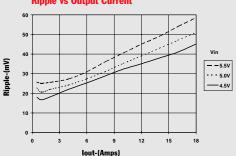
Case/Pin Configuration	
Vertical Through-Hole	N
Horizontal Through-Hole	Α
Horizontal Surface Mount	C


Logic 0 = Pin 12 potential (remote sense gnd) Logic 1 = Open circuit (no pull-up resistors) VID3 may not be changed while the unit is operating

CHARACTERISTIC DATA


PT7706, V₀ = 1.8 VDC (See Note 1)

Safe Operating Area Curves (@Vin=+3.3V)



PKG SUFFIX A, C



PT7706, V₀ = 1.8 VDC (See Note 1)

Note 1: All data listed in the above graphs has been developed from actual products tested at 25°C. This data is considered typical data for the ISR. Note 2: SOA curves represent operating conditions at which internal components are at or below manufacturer's maximum rated operating temperatures.

Power Trends, Inc. 27715 Diehl Road, Warrenville, IL 60555 (800) 531-5782 Fax: (630) 393-6902 http://www.powertrends.com

3.3V Bus Products

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated