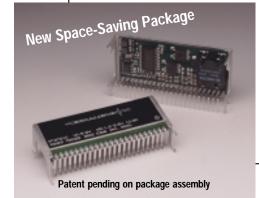
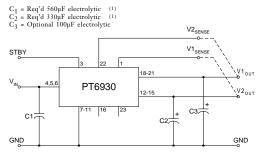
For assistance or to order; call (800) 531-5782

SLTS062 - DECEMBER 1999


Application Notes

Mechanical Outline


Product Selector Guide

Series **PT6930**

5V TO 3.3V/2.5V 25 WATT DUAL OUTPUT INTEGRATED SWITCHING REGULATOR

Standard Application

Features

Dual Outputs: +3.3V/6A +2.5V/2.2A or +1.8V/1.5A

- Adjustable Output Voltage
- Remote Sense (both outputs)
- Standby Function
- Over-Temperature Protection
- Soft-Start
- Internal Sequencing
- 23-pin Excalibur[™] Package

The PT6930 is a new series of 25W dual output ISRs designed to power the latest generation DSP chips. Both output voltages are independently adjustable with external resistors. In addition, the second output voltage of the PT6931 can be selected for either 2.5V or 1.8V to accommodate the next generation of DSP chips. The internal power sequencing of both outputs meet the requirements of TI's 'C6000 series DSPs.

Pin-Out Information

Pin	Function	Pin	Function
1	V_1 Remote Sense	13	V_{1out}
2	Do Not Connect	14	V _{1out}
3	STBY	15	V _{1out}
4	Vin	16	V ₁ Adjust
5	Vin	17	Do Not Connect
6	Vin	18	V _{2out}
7	GND	19	V _{2out}
8	GND	20	V _{2out}
9	GND	21	V _{2out}
10	GND	22	V ₂ Remote Sense
11	GND	23	V2 Adjust*
12	V _{1out}		
Noto	for PT6031 only		

*Note: for PT6931 only: with pin 23 open, V2out=2.5V with pin 23 shorted to pin 22, V2out=1.8V

Ordering Information PT6931 = +3.3 Volts +2.5/+1.8 Volts **PT6932** = +3.3 Volts +1.5 Volts

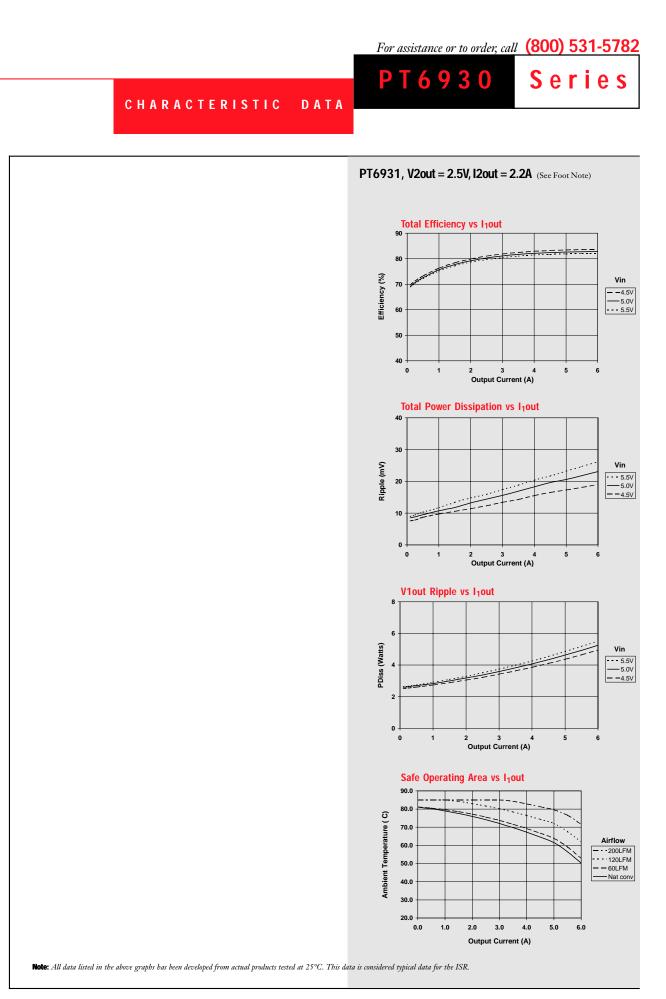
PT Series Suffix (PT1234X)

Case/Pin Configuration

Vertical Through-Hole	Ν
Horizontal Through-Hole	Α
Horizontal Surface Mount	С

(For dimensions and PC board layout, see Package Styles 1320 and 1330.)

Preliminary Specifications


Characteristics			F	PT6930 SERIE	S	
(T _a = 25°C unless noted)	Symbols	Conditions	Min	Тур	Max	Units
Output Current	Io	$\begin{array}{c} T_a = +60^{\circ}\text{C}, 200 \text{ LFM}, \text{pkg N} & V_1 = 3.3\text{V} \\ V_2 = 2.5\text{V} \\ V_2 = 1.8\text{V} \\ V_2 = 1.2\text{V} \end{array}$	0.1 (2) 0 0 0		5.5 (3) 2.2 (3) 1.75 (3) 1.2 (3)	А
		$\begin{array}{l} T_a=+25^\circ C, natural convection V_1=3.3V\\ V_2=2.5V\\ V_2=1.8V\\ V_2=1.2V \end{array}$	0.1 0 0 0		6.0 2.2 1.75 1.2	А
Input Voltage Range	Vin	$0.1A \le I_o \le I_{max}$	4.5		5.5	V
Output Voltage Tolerance	ΔV_o	$V_{in} = +5V$, $I_o = I_{max}$, both outputs $0^{\circ}C \le T_a \le +65^{\circ}C$	Vo-0.1	-	Vo+0.1	V
Line Regulation	Reg _{line}	$4.5V \le V_{in} \le 5.5V, I_o = I_{max} \qquad \begin{array}{c} V_1 = 3.3V \\ V_2 = 2.5V \end{array}$	_	±7 ±7	±17 ±13	mV
Load Regulation	$\operatorname{Reg}_{\operatorname{load}}$	$V_{in} = +5V, 0.1 \le I_o \le I_{max}$ $V_1 = 3.3V$ $V_2 = 2.5V$	_	±17 ±4	±33 ±10	mV
V _o Ripple/Noise	V_n	$V_{in} = +5V, I_o = I_{max}$ $V_1 = 3.3V$ $V_2 = 2.5V$	_	50 25	_	mV
Transient Response with $C_2 = 330 \mu F$	$\stackrel{t_{tr}}{V}_{os}$	$ \begin{array}{c} I_{o} \mbox{ step between } 0.5 x I_{max} \mbox{ and } I_{max} \\ V_{o} \mbox{ over/undershoot } \\ V_{1} = 3.3 V \\ V_{2} = 2.5 V \end{array} $		25 60 60		μSec mV
Efficiency	η	V_{in} = +5V, I_o = 4A total		75	_	%
Switching Frequency	f_{\circ}	$\begin{array}{l} 4.5\mathrm{V} \leq \mathrm{V_{in}} \leq 5.5\mathrm{V} \\ 0.1\mathrm{A} \leq \mathrm{I_o} \leq \mathrm{I_{max}} \end{array}$	475	600	725	kHz
Absolute Maximum Operating Temperature Range	T _a	_	-40 (4)	-	+85 (5)	°C
Storage Temperature	Ts	_	-40	_	+125	°C
Weight	_	Vertical/Horizontal		29	_	grams

Notes: (1) The PT6930 series requires a 560µF electrolytic capacitor on the input and a 330µF electrolytic capacitor on the output for proper operation in all applications. (2) Iomin current of 0.25A can be divided brween both outputs; V1, or V2. The ISR will operate down to no-load with reduced specifications.

(3) Iomax listed for each output assumes the maximum current drawn simultaneously on both outputs. Consult the factory for the absolute maximum.

(4) For operating temperatures below 0°C, use tantalum type capacitors on both the input and output.
(5) See Safe Operating Area curves for appropriate derating.

Power Trends, Inc. 27715 Diehl Road, Warrenville, IL 60555 (800) 531-5782 Fax: (630) 393-6902 http://www.powertrends.com

Power Trends, Inc. 27715 Diehl Road, Warrenville, IL 60555 (800) 531-5782 Fax: (630) 393-6902 http://www.powertrends.com

1 a. (050/575-0702 http://www.

For assistance or to order, call (800) 531-5782

Application otes

PT6920/PT6930 Series

More Application Notes

Adjusting the Output Voltage of the PT6920 and PT6930 Dual Output Voltage ISRs

Each output voltage from the PT6920 and PT6930 series of ISRs can be independantly adjusted higher or lower than the factory trimmed pre-set voltage. V1 (the voltage at V1out), or V2 (the voltage at V2out) may each be adjusted either up or down using a single external resistor². Table 1 gives the adjustment range for both V1 and V2 for each model in the series as $V_a(min)$ and $V_a(max)$. Note that V_2 must always be lower than V_1 ³.

V₁ Adjust Up: To increase the output, add a resistor R4 between pin 16 (V₁ Adjust) and pins 7-11 (GND)².

V₁ Adjust Down: Add a resistor (R3), between pin 16 (V₁ Adjust) and pin 1 (V₁ Remote Sense)².

V₂ Adjust Up: Add a resistor R2 between pin 23 (V2 Adjust) and pins 7-11 (GND)².

V₂ Adjust Down: Add a resistor (R1) between pin 23 (V₂ Adjust) and pin 22 (V₂ Remote Sense)².

Refer to Figure 1 and Table 2 for both the placement and value of the required resistor.

Notes:

- 1. The output voltages, V1out and V2out, may be adjusted independantly.
- 2. Use only a single 1% resistor in either the (R3) or R4 location to adjust V_1 , and in the (R1) or R2 location to adjust V_2 . Place the resistor as close to the ISR as possible.
- 3. V_2 must always be at least 0.2V lower than V_1 .
- 4. V₂ on both the PT6921 and PT6931 models may be adjusted from 2.5V to 1.8V by simply connecting pin 22 (V2 Remote Sense) to pin 23 (V2 Adjust). For more details, consult the data sheet.

Figure 1

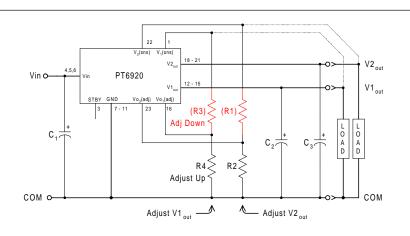
- 5. If V_1 is increased above 3.3V, the minimum input voltage to the ISR must also be increased. The minimum required input voltage must be $(V_1 + 1.2)V$ or 4.5V, whichever is greater. Do not exceed 5.5V
- 6. Never connect capacitors to either the $V_1\,\mbox{Adjust}$ or V2 Adjust pins. Any capacitance added to these control pins will affect the stability of the respective regulated output.
- 7. Adjusting either voltage (V_1 or V_2) may increase the power dissipation in the regulator, and correspondingly change the maximum current available at either output. Consult the factory for application assistance.

The adjust up and adjust down resistor values can also be calculated using the following formulas. Be sure to select the correct formula parameter from Table 1 for the output and model being adjusted.

(R1) or (R3) =
$$\frac{R_o(V_a-1)}{V_o-V_a} - R_s k\Omega$$

 $-R_s$

kΩ


Where: V_0 = Original output voltage, (V₁ or V₂)

V_a = Adjusted output voltage

- R_0 = The resistance value from Table 1
- = The series resistance from Table 1 Rs

Table 1

Output Bus	V ₁ out	V2 0	ut
Series Pt #			
Standard Case	PT6921/22	PT6921	PT6922
Excalibur Case	PT6931/32	PT6931	PT6932
Adj. Resistor	<mark>(R3)</mark> /R4	<mark>(R1)</mark> /R2	<mark>(R1)</mark> /R2
V _o (nom)	3.3V	2.5V	1.5
Va(min)	2.3V	1.8V	1.2
Va(max)	3.6V	3.0V	3.0
R ₀ (kΩ)	12.1	10.0	9.76
R _S (kΩ)	12.1	11.5	6.49

For assistance or to order, call (800) 531-5782

PT6920/PT6930 Series

Application

Notes

	930 ADJUSTMENT RES		
utput Bus	V ₁ out	V2	out
eries Pt# andard Case	PT6921/6922	PT6921	PT6922
calibur Case		PT6931	PT6932
dj Resistor	(R3)/R4	(R1)/R2	(R1)/R2
(nom)	3.3Vdc	2.5Vdc	1.5Vdc
a(req'd)			
1.2			(0.0)kΩ
1.25			(3.3)kΩ
1.3			(8.2)kΩ
1.35			(16.3)kΩ
1.4			(32.6)kΩ
1.45			(81.4)kΩ
1.5			
1.55			189.0kΩ
1.6			91.1kΩ
1.65			58.6kΩ
1.7			42.3kΩ
1.75			32.6kΩ
1.8		(0.0)kΩ	26.0kΩ
1.85		(1.6)kΩ	21.4kΩ
1.9		(3.5)kΩ	17.9kΩ
1.95		(5.8)kΩ	15.2kΩ
2.0		(8.5)kΩ	13.0kΩ
2.05		(11.8)kΩ	11.3kΩ
2.1		(16.0)kΩ	9.8kΩ
2.15		(21.4)kΩ	8.5kΩ
2.2		(28.5)kΩ	7.5kΩ
2.25		(38.5)kΩ	6.5kΩ
2.3	(3.6)kΩ	(53.5)kΩ	5.7kΩ
2.35	(5.1)kΩ	(78.5)kΩ	5.0kΩ
2.4	(6.7)kΩ	(129.0)kΩ	4.4kΩ
2.45	(8.5)kΩ	(279.0)kΩ	3.8kΩ
2.5	(10.6)kΩ		3.3kΩ
2.55	(12.9)kΩ	189.0kΩ	2.8kΩ
2.6	(15.6)kΩ	88.5kΩ	2.4kΩ
2.65	(18.6)kΩ	55.2kΩ	2.0kΩ
2.7	(22.2) k Ω See Note 3	38.5kΩ	1.6kΩ
2.75	(26.4)kΩ	28.5kΩ	1.3kΩ
2.8	(31.5)kΩ	21.8kΩ	1.0kΩ
2.85	(37.6)kΩ	17.1kΩ	$0.7 \mathrm{k}\Omega$
2.9	(45.4)kΩ	13.5kΩ	0.5kΩ
2.95	(55.3)kΩ	10.7kΩ	0.2kΩ
3.0	(68.6)kΩ	8.5kΩ	0.0kΩ
3.05	(87.1)kΩ		
3.1	(115.0)kΩ		
3.15	(161.0)kΩ		
3.2	(254.0)kΩ		
3.25	(532.0)kΩ		
3.3			
3.4	$109.0k\Omega$ See Note 5		
3.5	48.4kΩ		
3.6	28.2kΩ		

Power Trends, Inc. 27715 Diehl Road, Warrenville, IL 60555 (800) 531-5782 Fax: (630) 393-6902 http://www.powertrends.com

Application Notes

PT6920/PT6930 Series

Using the Standby Function on the PT6920 and PT6930 Dual Output Voltage Converters

Both output voltages of the 23-pin PT6920/6930 dual output converter may be disabled using the regulator's standby function. This function may be used in applications that require powerup/shutdown sequencing, or wherever there is a requirement to control the output voltage On/Off status with external circuitry.

The standby function is provided by the *STBY** control, pin 3. If pin 3 is left open-circuit the regulator operates normally, and provides a regulated output at both V₁out (pins 12–15) and V₂out (pins 18–21) whenever a valid supply voltage is applied to V_{in} (pins 4, 5, & 6) with respect to GND (pins 7-11). If a low voltage² is then applied to pin-3 both regulator outputs will be simultaneously disabled and the input current drawn by the ISR will typcially drop to less than 30mA (50mA max). The standby control may also be used to hold-off both regulator outputs during the period that input power is applied.

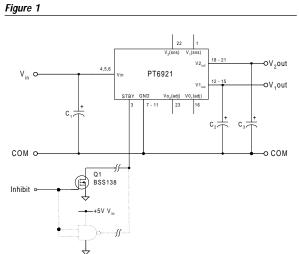
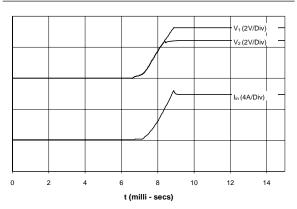

The standby pin is ideally controlled using an open-collector (or open-drain) discrete transistor (See Figure 1). It may also be driven directly from a dedicated TTL^3 compatible gate. Table 1 provides details of the threshold requirements.

Table 1	Inhibit	Control	Thresholds	2,3

Parameter	Min	Max
Enable (VIH)	1.8V	Vin
Disable (VIL)	-0.1V	0.8V


Notes:

- The Standby/Inhibit control logic is similar for all Power Trends' modules, but the flexibility and threshold tolerances will be different. For specific information on this function for other regulator models, consult the applicable application note.
- 2. The Standby control pin is ideally controlled using an opencollector (or open-drain) discrete transistor and requires no external pull-up resistor. To disable the regulator output, the control pin must be pulled to less than 0.8Vdc with a lowlevel 0.5mA sink to ground.
- 3. The Standby input on the PT6920/6930 series may be driven by a differential output device, making it directly compatible with TTL logic. The control input has an internal pull-up to the input voltage V_{in} . A voltage of 1.8V or greater ensures that the regulator is enabled. <u>Do not</u> use devices that can drive the Standby control input above 5.5V or V_{in} .

Turn-On Time: Turning Q_1 in Figure 1 off removes the lowvoltage signal at pin 3 and enables both outputs from the PT6920/6930 regulator. Following a delay of about 5–10ms, V_1 out and V_2 out rise together until the lower voltage, V_2 out, reaches its set output. V_1 out then continues to rise until both outputs reach full regulation voltage. The total power-up time is less than 15ms, and is relatively independant of load, temperature, and output capacitance. Figure 2 shows waveforms of the input current I_m , and output voltages V_1 out and V_2 out, for a PT6921 (3.3V/2.5V). The turn-off of Q_1 corresponds to t =0 secs. The waveforms were measured with a 5Vdc input voltage, and with resistive loads of 5.5A and 2.2A at the V_1 out and V_2 out outputs respectively.

Figure 2

More Application Notes