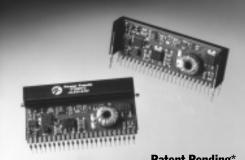
Revised 3/9/99


Application Notes

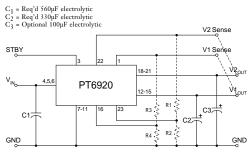
Mechanical Outline

Product Selector Guide

Series **PT6920**

5V TO 3.3V/2.5V 25 WATT DUAL OUTPUT **INTEGRATED SWITCHING REGULATOR**

Features


• Dual Outputs: +3.3V/6A +2.5V/2.2A or +1.8V/1.5A

- Adjustable Output Voltage
- Remote Sense (both outputs)
- Standby Function •
- •
- Over-Temperature Protection •
- Soft-Start
- Internal Sequencing
- 23-pin SIPPackage

The PT6920 is a new series of 25W dual output ISRs designed to power the latest generation DSP chips. Both output voltages are independently adjustable with external resistors. In addition, the second output voltage of the PT6921 can be selected for 2.5V or 1.8V to accommodate the next generation of DSP chips. The internal power sequencing of both outputs meet the latest requirements of TI's 'C6000 series DSPs.

Standard Application

Pin-0	Pin-Out Information					
Pin	Function	Pin	Function			
1	V_1 Remote Sense	13	V _{1out}			
2	Do Not Connect	14	V _{1out}			
3	STBY	15	V _{1out}			
4	Vin	16	V ₁ Adjust			
5	Vin	17	Do Not Connect			
6	Vin	18	V _{2out}			
7	GND	19	V _{2out}			
8	GND	20	V _{2out}			
9	GND	21	V _{2out}			
10	GND	22	V ₂ Remote Sense			
11	GND	23	V ₂ Adjust*			
12	V _{1out}					

Ordering Information

PT6921 = +3.3 Volts +2.5/+1.8 Volts РТ6922口 = +3.3 Volts +1.5 Volts

PT Series Suffix (PT1234X)

Case/Pin Configuration

Vertical Through-Hole	Ν
Horizontal Through-Hole	A
Horizontal Surface Mount	С

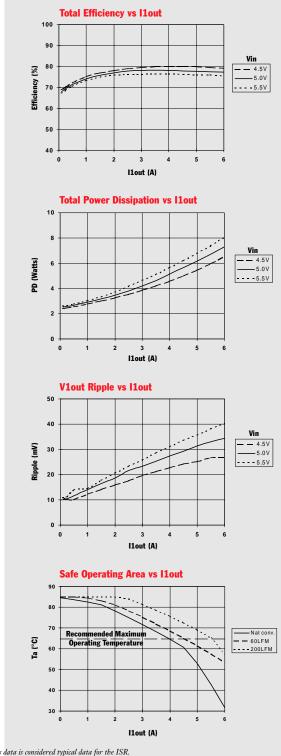
(For dimensions and PC board layout, see Package Styles 1100 and 1110.)

Note: for PT6921 only: with pin 23 open, V2out=2.5V with pin 23 shorted to pin 22, V2out=1.8V

Preliminary Specifications

Characteristics		PT6920 SERI				RIES	
(T _a = 25°C unless noted)	Symbols	Conditions		Min	Тур	Max	Units
Output Current	Io	T _a = +60°C, 200 LFM, pkg N	$\begin{array}{c} V_1 = 3.3V \\ V_2 = 2.5V \\ V_2 = 1.8V \\ V_2 = 1.2V \end{array}$	$0.1 \\ 0 \\ 0 \\ 0 \\ 0$	 	5.5 2.2 1.75 1.2	A A A A
		T_a = +25°C, natural convectio	n $V_1 = 3.3V$ $V_2 = 2.5V$ $V_2 = 1.8V$ $V_2 = 1.2V$	$0.1 \\ 0 \\ 0 \\ 0 \\ 0$	 	6.0 2.2 1.75 1.2	A A A A
Input Voltage Range	Vin	$0.1A \leq I_o \leq I_{max}$		4.5	_	5.5	V
Output Voltage Tolerance	ΔV_{o}	V_{in} = +5V, I_o = I_{max} both outp 0°C \leq T_a \leq +65°C	uts	Vo-0.1	—	Vo+0.1	V
Line Regulation	Reg _{line}	$4.5\mathrm{V} \leq \mathrm{V_{in}} \leq 5.5\mathrm{V}\text{, }\mathrm{I_o} = \mathrm{I_{max}}$	$V_1 = 3.3V$ $V_2 = 2.5V$	_	±7 ±7	±17 ±13	mV mV
Load Regulation	Reg _{load}	V_{in} = +5V, 0.1 \leq I_{o} \leq I_{max}	$V_1 = 3.3V$ $V_2 = 2.5V$	_	±17 ±4	±33 ±10	mV mV
V _o Ripple/Noise	V_n	V_{in} = +5V, I_o = I_{max}	$\begin{array}{l} V_1=3.3V\\ V_2=2.5V \end{array}$	_	50 25	_	mV mV
Transient Response with $C_2 = 330 \mu F$	$\stackrel{t_{tr}}{V_{os}}$	I_o step between $0.5 x I_{max}$ and V_o over/undershoot	$V_1 = 3.3V$ $V_2 = 2.5V$		25 60 60		μSec mV mV
Efficiency	η	V_{in} = +5V, I_o = 4A total		_	75	_	%
Switching Frequency	fo	$\begin{array}{l} 4.5\mathrm{V} \leq \mathrm{V_{in}} \leq 5.5\mathrm{V} \\ 0.1\mathrm{A} \leq \mathrm{I_o} \leq \mathrm{I_{max}} \end{array}$		475	600	725	kHz
Absolute Maximum Operating Temperature Range	Та	_		0	—	+85	°C
Recommended Operating Temperature Range	T _a	Forced airflow = 200 LFM Over V _{in and} I _o Ranges		0	_	+65	°C
Storage Temperature	Ts	_		-40	_	+125	°C
Weight	_	Vertical/Horizontal		_	29		grams

* This product is the subject of one or more patents. Other patents pending.


Power Trends, Inc. 27715 Diehl Road, Warrenville, IL 60555 [800] 531-5782 Fax: (630) 393-6902 http://www.powertrends.com

For assistance or to order, call (800) 531-5782

PT6920 Series

Note 1: All data listed in the above graphs has been developed from actual products tested at 25°C. This data is considered typical data for the ISR.

Power Trends, Inc. 27715 Diehl Road, Warrenville, IL 60555 (800) 531-5782 Fax: (630) 393-6902 http://www.powertrends.com

For assistance or to order, call (800) 531-5782

tion to adjust V_1 , and in the (R1) or R2 location to adjust V_2 .

V₂ Adjust pins. Any capacitance added to these control pins

will affect the stability of the respective regulated output.

6. To comply with the ISRs power dissipation limits, changes

made to either output voltage (V1 or V2) may affect the

maximum current available from both outputs. For more

information, consult the related applications note, "Deter-

mining the Maximum Output Current for the PT6920

Place the resistor as close to the ISR as possible.

5. Never connect capacitors to either the V_1 Adjust or

Application

e s

PT6920 Series

More Application Notes

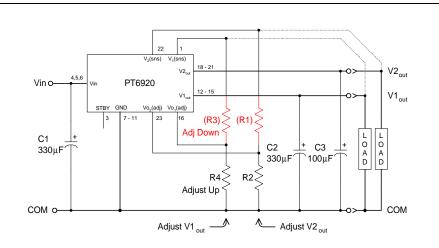
Adjusting the Output Voltage of the PT6920 Dual **Output Voltage ISR**

Both output voltages from the Power Trends PT6920 series ISRs can be independantly adjusted higher or lower than their factory trimmed pre-set voltage. In each case only a single external resistor is required to adjust either V1 (the voltage at V1out, or V2 (the voltage at V2out). Table 1 gives the permissible adjustment range for both V1 and V2 for each model in the series as V_a(min) and V_a(max). <u>Note: V₂ must always be lower</u> than V_1 .

V₁ Adjust Up: To increase the output, add a resistor R4 between pin 16 (V1 Adjust) and pins 7-11 (GND).

V₁ Adjust Down: Add a resistor (R3), between pin 16 (V1 Adjust) and pin 1 (V1 Remote Sense).

V₂ Adjust Up: Add a resistor R2 between pin 23 (V2 Adjust) and pins 7-11 (GND).


V₂ Adjust Down: Add a resistor (R1) between pin 23 (V₂ Adjust) and pin 22 (V2 Remote Sense).

Refer to Figure 1 and Table 2 for both the placement and value of the required resistor.

Notes:

- 1. The voltage at V1out and V2out may be adjusted independantly.
- 2. V_2 must always be at least 0.2V lower than V_1 .
- 3. If V_1 is increased above 3.3V, the minimum input voltage to the ISR must also be increased. The minimum required input voltage must be $(V_1 + 1.2)V$ or 4.5V, whichever is greater. Do not exceed 6.0V
- 4. Use only a single 1% resistor in either the (R3) or R4 loca-

Figure 1

The adjust up and adjust down resistor values can also be calculated using the following formulae. Be sure to select the correct formula parameter from Table 1 for the output and model being

$$\frac{(R1)}{(R3)} = \frac{R_o(V_a-1)}{V_o-V_a} - R_s \quad k\Omega$$

Series Dual Output ISR."

adjusted.

Table 1

Where: Vo = Original output voltage, $(V_1 \text{ or } V_2)$ Va = Adjusted output voltage

= The resistance value from Table 1 Ro

= The series resistance from Table 1 R_s

Output Bus	V1 out	V ₂ out		
Series Pt #	PT6921/22	PT6921	PT6922	
Adj. Resistor	(R3)/R4	(R1)/R2	<mark>(R1)</mark> /R2	
Vo(nom)	3.3V	2.5V	1.5	
Va(min)	2.3V	1.8V	1.2	
Va(max)	4.2V	3.0V	3.0	
R o (kΩ)	12.1	10.0	9.76	
Rs (k Ω)	12.1	11.5	6.49	

For assistance or to order, call (800) 531-5782

PT6920 Series

	USTMENT RESISTO		
utput Bus	V1 out	V2 0	
eries Pt #	PT6921/22	PT6921	PT6922
lj Resistor (nom)	(R3)/R4 3.3Vdc	(R1)/R2 2.5Vdc	(R1)/R2 1.5Vdc
	3.5740	2.5740	1.0140
(req'd)			(0.0)1.0
1.2			(0.0)kΩ
1.25			(3.3)kΩ
1.3			(8.2)kΩ
1.35			(16.3)kΩ
1.4			(32.6)kΩ
1.45			(81.4)kΩ
1.5			
1.55			189.0kΩ
1.6			91.1kΩ
1.65			58.6kΩ
1.7			42.3kΩ
1.75			32.6kΩ
1.8		(0.0)kΩ	26.0kΩ
1.85		(1.6)kΩ	21.4kΩ
1.9		(3.5)kΩ	17.9kΩ
1.95		(5.8)kΩ	15.2kΩ
2.0		(8.5)kΩ	13.0kΩ
2.05		(11.8)kΩ	11.3kΩ
2.05		(11.0)kΩ	9.8kΩ
2.15		(10.0)kS2 (21.4)kΩ	9.6KΩ
2.13			
		(28.5)kΩ	7.5kΩ
2.25	(2.010	(38.5)kΩ	6.5kΩ
2.3	(3.6)kΩ	(53.5)kΩ	5.7kΩ
2.35	(5.1)kΩ	(78.5)kΩ	5.0kΩ
2.4	(6.7)kΩ	(129.0)kΩ	4.4kΩ
2.45	(8.5)kΩ	(279.0)kΩ	3.8kΩ
2.5	(10.6)kΩ		3.3kΩ
2.55	(12.9)kΩ	189.0kΩ	2.8kΩ
2.6	(15.6)kΩ	88.5kΩ	2.4kΩ
2.65	(18.6)kΩ	55.2kΩ	2.0kΩ
2.7	(22.2)kΩ	38.5kΩ	1.6kΩ
2.75	(26.4)kΩ	28.5kΩ	1.3kΩ
2.8	(31.5)kΩ	21.8kΩ	1.0kΩ
2.85	(37.6)kΩ	17.1kΩ	0.7kΩ
2.9	(45.4)kΩ	13.5kΩ	0.5kΩ
2.95	(55.3)kΩ	10.7kΩ	0.2kΩ
3.0	(68.6)kΩ	8.5kΩ	0.0kΩ
3.05	(87.1)kΩ		
3.1	(115.0)kΩ		
3.15	(161.0)kΩ		
3.2	(101.0)ks2 (254.0)kΩ		
3.25	(532.0)kΩ		
3.3	100.01-0		
3.4	109.0kΩ		
3.5	48.4kΩ		
3.6	28.2kΩ		
3.7	18.2kΩ		
3.8	12.1kΩ		
3.9	8.1kΩ		
4.0	5.2kΩ		
4.1	3.0kΩ		
4.2	1.3kΩ		

Application	Notes
-------------	-------

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated