For assistance or to order, call (800) 531-5782

ADVANCED INFORMATION - AVAILABLE 3Q98

PT6670 Series

3.3V INPUT 20W BOOST INTEGRATED SWITCHING REGULATOR

Revised 11/18/98

• Input Voltage Range: 3.0 to 3.6V

- Adjustable Output Voltage
- 85% Efficiency
- Remote Sense Capability
- Soft Start

The PT6670 series is a new addition to the Power Trends high performance family of 14-Pin SIP (Single In-line Package) Integrated Switching Regulators (ISRs), designed for 3.3V bus applications needing 5 to 12 volts for auxilliary circuits at up to 20W of output power.

Standard Application

 C_1 = Required 560µF electrolytic C_2 = Required 560µF electrolytic

Pin-Out Information Ordering Information Pin Function PT6671 □ = +5.0 Volts

PT6671□ = +5.0 Volts **PT6672**□ = +9.0 Volts **PT6673**□ = +12.0 Volts

PT Series Suffix (PT1234X)

Note: Back surface of product is conducting metal.

Preliminary Specifications

Characteristics				70 SERIES		
$(T_a = 25^{\circ}C \text{ unless noted})$	Symbols	Conditions	Min	Тур	Max	Units
Output Current	Io	$T_a = 60^{\circ}C$, 200 LFM, pkg P $T_a = 25^{\circ}C$, natural convection V V V	$\begin{array}{c} 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \end{array}$		TBD 4.0 2.2 1.7	A A A A
Input Voltage Range	Vin	Over V_o and I_o range	3.0	_	3.6	V
Inrush Current	I_{ir}	On start-up	_	_	TBD	А
Output Voltage Tolerance	ΔV_{o}		_	1.5	_	%Vo
Output Voltage Adjust Range	V_{oadj}	Pin 14 to V_o or ground V V V	$V_{o} = +5V$	TBD TBD TBD		V
Line Regulation	Reg _{line}	Over V_{in} range, $I_o = I_{omax}$	_	±0.25	±0.5	%Vo
Load Regulation	Regload	V_{in} = +3.3V, $0.1 \le I_o \le I_{omax}$	_	±0.25	±0.5	%Vo
V _o Ripple/Noise	Vn	V_{in} = +3.3V, $I_o = I_{omax}$	_	3	_	%Vo
Transient Response with C1= C2= 560µF	t _{tr} V _{os}	I_o step between ${}^1\!\!\!/ I_{omax}$ and I_{omax} V_o over/undershoot	_	500 5	_	μSec %Vo
Efficiency	h	$V_{in} = +3.3 V$, $I_o = \frac{1}{2} I_{omax}$ V V	$F_{0} = +5V$ $F_{0} = +9V$ $F_{0} = +12V$	87 86 87	_	% % %
		$V_{in} = +3.3V, I_o = I_{omax} \qquad V \\ V \\ V \\ V$	$V_{0} = +5V$ — $V_{0} = +9V$ — $V_{0} = +12V$ —	84 80 82		% % %

Note: The PT6670 Series requires two 560µF electrolytic capacitors (input and output) for proper operation in all applications. Please note that this product does not include short circuit protection.

PT6670 Series

Preliminary Specifications (continued)

Characteristics			PT6670 SERIES			
$(T_a = 25^{\circ}C \text{ unless noted})$	Symbols	Conditions	Min	Тур	Max	Units
Switching Frequency	$f_{ m o}$	$\begin{array}{l} 3.0\mathrm{V} \leq \mathrm{V_{in}} \leq 3.6\mathrm{V} \\ 0.1\mathrm{A} \leq \mathrm{I_o} \leq \mathrm{I_{omax}} \end{array}$	_	300	_	kHz
Absolute Maximum Operating Temperature Range	T _a		-40		+85	°C
Recommended Operating Temperature Range	Ta	Free Air Convection (40-60 LFM) Over V_{in} and I_o ranges with heat tab	-40	-	+65	°C
Thermal Resistance	θ_{ja}	Free Air Convection (40-60 LFM)		TBD	_	°C/W
Storage Temperature	Ts	_	-40		+125	°C
Mechanical Shock	_	Per Mil-STD-883D, Method 2002.3	_	500	_	G's
Mechanical Vibration	-	Per Mil-STD-883D, Method 2007.2, 20-2000 Hz, soldered in a PC board	_	7.5	_	G's
Weight	_	_		14	_	grams

Note: The PT6670 Series requires two 560µF electrolytic capacitors (input and output) for proper operation in all applications. Please note that this product does not include short circuit protection.

CHARACTERISTIC DATA

PT6670 Series (@ Vin=+3.3V) (See Note 1)

Note 1: All data listed in the above graphs has been developed from actual products tested at 25°C. This data is considered typical data for the ISR.

Power Trends, Inc. 27715 Diehl Road, Warrenville, IL 60555 (800) 531-5782 Fax: (630) 393-6902 http://www.powertrends.com

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated