PT6100 Series

- 90% Efficiency
- Adjustable Output Voltage
- Internal Short Circuit Protection
- Over-Temperature Protection
- On/Off Control (Ground Off)
- Small SIP Footprint
- Meets Requirements for FCC Part 15; Class B limits for Radiated Emissions
- Wide Input Range

The PT6100 Series is a line of HighPerformance 1 Amp, 12-Pin SIP (Single In-line Package) Integrated Switching Regulators (ISRs) designed to meet the on-board power conversion needs of battery powered or other equipment requiring high efficiency and small size. This high performance ISR family offers a unique combination of features combining 90% typical efficiency with open-collector on/off control and adjustable output voltage. Quiescent current in the shutdown mode is less than $100 \mu \mathrm{~A}$.

Characteristics ($\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless noted)	Symbols	Conditions		PT6100 SERIES			Units
				Min	Typ	Max	
Output Current	I_{0}	Over $\mathrm{V}_{\text {in }}$ range		0.1*	-	1.0	A
Short Circuit Current	$\mathrm{I}_{\text {sc }}$	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {in }} \mathrm{min}$		-	3.5	-	Apk
Input Voltage Range Note: inhibit function cannot be used with Vin above 30V.)	$\mathrm{V}_{\text {in }}$	$0.1 \leq \mathrm{I}_{0} \leq 1.0 \mathrm{~A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{o}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{o}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{o}}=12 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \\ & 16 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 26 \\ & 30 / 38^{* *} \\ & 30 / 38^{* *} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Output Voltage Tolerance	$\Delta V_{\text {o }}$	$\begin{aligned} & \text { Over } V_{\text {in }} \text { Range, } \mathrm{I}_{\mathrm{o}}= \\ & \mathrm{T}_{\mathrm{a}}=0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		-	± 1.0	± 2.0	\% $\mathrm{V}_{\text {o }}$
Line Regulation	Regline	Over $\mathrm{V}_{\text {in }}$ range		-	± 0.25	± 0.5	\% V_{o}
Load Regulation	Reg ${ }_{\text {load }}$	$0.1 \leq \mathrm{I}_{0} \leq 1.0 \mathrm{~A}$		-	± 0.25	± 0.5	\% V_{0}
Vo Ripple/Noise	V_{n}	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {in }} \mathrm{min}, \mathrm{I}_{0}=1.0 \mathrm{~A}$		-	± 2	-	\% $\mathrm{V}_{\text {o }}$
Transient Response with $\mathrm{C}_{0}=100 \mu \mathrm{~F}$	$\begin{aligned} & \mathrm{t}_{\mathrm{tr}} \\ & \mathrm{~V}_{\mathrm{os}} \end{aligned}$	50\% load change V_{o} over/undershoot		-	$\begin{aligned} & 100 \\ & 5.0 \\ & \hline \end{aligned}$	200	$\begin{aligned} & \mu \mathrm{Sec} \\ & \% \mathrm{~V}_{\mathrm{o}} \\ & \hline \end{aligned}$
Efficiency	η	$\begin{aligned} & V_{\text {in }}=9 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{o}}= \\ & \mathrm{V}_{\mathrm{in}}=9 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{o}}= \\ & \mathrm{V}_{\mathrm{in}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{o}}= \end{aligned}$		—	$\begin{aligned} & \hline 84 \\ & 89 \\ & 91 \\ & \hline \end{aligned}$	—	$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \\ & \hline \end{aligned}$
Switching Frequency	$f_{\text {o }}$	Over $\mathrm{V}_{\text {in }}$ and I_{o} range		400	500	600	kHz
Shutdown Current	$\mathrm{I}_{\text {sc }}$	$\mathrm{V}_{\text {in }}=15 \mathrm{~V}$		-	100	-	$\mu \mathrm{A}$
Quiescent Current	$\mathrm{Inl}_{\mathrm{nl}}$	$\mathrm{I}_{0}=0 \mathrm{~A}, \mathrm{~V}_{\text {in }}=10 \mathrm{~V}$		-	10	-	mA
Output Voltage Adjustment Range	V_{0}	Below V_{0} Above V_{o}		See Application Notes.			
Absolute Maximum Operating Temperature Range	T_{a}			-40	-	+85	${ }^{\circ} \mathrm{C}$
Recommended Operating Temperature Range	Ta	Free Air Convection, (40-60LFM) $\mathrm{V}_{\text {in }}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=0.75 \mathrm{~A}$	$\begin{aligned} & V_{o}=3.3 \mathrm{~V} \\ & V_{o}=5 \mathrm{~V} \\ & V_{0}=12 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{r} -40 \\ -40 \\ -40 \\ \hline \end{array}$	-	$\begin{aligned} & +85^{* * *} \\ & +85^{* * *} \\ & +80^{* * *} \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}$
Thermal Resistance	$\theta_{\text {ja }}$	Free Air Convection (40-60LFM)	$\begin{aligned} & \mathrm{V}_{\mathrm{o}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{o}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{o}}=12 \mathrm{~V} \\ & \hline \end{aligned}$	—	$\begin{aligned} & 50 \\ & 40 \\ & 40 \\ & \hline \end{aligned}$	—	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	$\mathrm{T}_{\text {s }}$			-40	-	+125	${ }^{\circ} \mathrm{C}$
Mechanical Shock		Per Mil-STD-883D, 1 msec , Half Sine, mo	Method 2002.3 inted to a fixture	-	500	-	G's
Mechanical Vibration		Per Mil-STD-883D, $20-2000 \mathrm{~Hz}$, Soldered	Method 2007.2 in a PC board	-	10	-	G's
Weight				-	5.0	-	grams

[^0]** Input voltage cannot exceed 30 V when the inhibit function is used. ***See Thermal Derating chart. Note: The PT6100 Series requires a $100 \mu F$ electrolytic or tantalum output capacitor for proper operation in all applications.

PT6100 Series

CHARACTERISTIC DATA

PT6102, 3.3 VDC
(See Note 1)
fficiency vs Output Current

Ripple vs Output Current

Thermal Derating (T_{a}) (See Note 2)

Power Dissipation vs Output Current

PT6101, 5.0 VDC

Ripple vs Output Current

Thermal Derating $\left(\mathrm{T}_{\mathrm{a}}\right) \quad$ (See Note 2)

Power Dissipation vs Output Current

PT6103, 12.0 VDC
(See Note 1)

Efficiency vs Output Current

Ripple vs Output Current

Power Dissipation vs Output Current

Adjusting the Output Voltage of the Wide Input Range Bus ISRs

The output voltage of the Power Trends' Wide Input Range Series ISRs may be adjusted higher or lower than the factory trimmed pre-set voltage with the addition of a single external resistor. Table 1 accordingly gives the allowable adjustment range for each model for either series as $\mathrm{V}_{\mathrm{a}}(\min)$ and $\mathrm{V}_{\mathrm{a}}(\max)$.

Adjust Up: An increase in the output voltage is obtained by adding a resistor R 2 , between pin 12 (V_{o} adjust) and pins 5-8 (GND).

Adjust Down: Add a resistor (R1), between pin 12 (V_{o} adjust) and pins 9-11 ($V_{\text {out }}$).

Refer to Figure 1 and Table 2 for both the placement and value of the required resistor; either (R1) or R2 as appropriate.

Notes:

1. Use only a single 1% resistor in either the (R1) or R2 location. Place the resistor as close to the ISR as possible.
2. Never connect capacitors from V_{o} adjust to either GND or $\mathrm{V}_{\text {out }}$. Any capacitance added to the V_{o} adjust pin will affect the stability of the ISR.
3. Adjustments to the output voltage may place additional limits on the maximum and minimum input voltage for the part. The revised maximum and minimum input voltage limits must comply with the following requirements. Note that the minimum input voltage limits are also model dependant.
$\mathrm{V}_{\text {in }}(\max)=\left(8 \times \mathrm{V}_{\mathrm{a}}\right) \mathrm{V}$ or ${ }^{*} 30 / 38 \mathrm{~V}$, whichever is less.

PT6x0x/PT6x1x series:

$\mathrm{V}_{\text {in }}(\mathrm{min}) \quad=\left(\mathrm{V}_{\mathrm{a}}+4\right) \mathrm{V}$ or 9V, whichever is highest.

PT6x2x series:

$\mathrm{V}_{\text {in }}(\min) \quad=\left(\mathrm{V}_{\mathrm{a}}+2.5\right) \mathrm{V}$ or 7.5 V , whichever is highest.

* Limit is 30 V when inhibit function is used.

Figure 1

The values of (R1) [adjust down], and R2 [adjust up], can also be calculated using the following formulae.

$$
\begin{array}{ll}
(\mathrm{R} 1) & =\frac{\mathrm{R}_{\mathrm{o}}\left(\mathrm{~V}_{\mathrm{a}}-1.25\right)}{\mathrm{V}_{\mathrm{o}}-\mathrm{V}_{\mathrm{a}}} \\
\mathrm{k} \Omega \\
\mathrm{R} 2 & =\frac{1.25 \mathrm{R}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{o}}}
\end{array} \mathrm{k} \Omega .
$$

$$
\text { Where: } \begin{aligned}
& \mathrm{V}_{\mathrm{o}} \\
& =\text { Original output voltage } \\
\mathrm{V}_{\mathrm{a}} & =\text { Adjusted output voltage } \\
& \mathrm{R}_{\mathrm{o}}=\text { The resistance value from Table } 1
\end{aligned}
$$

Table 1
ISR ADJUSTMENT RANGE AND FORMULA PARAMETERS

1Adc Rated	PT6102	PT6101		PT6103
	PT6122	PT6121		
2Adc Rated	PT6213		PT6212	PT6214
	PT6223		PT6222	
3Adc Rated	PT6303		PT6302	PT6304
	PT6323		PT6322	
$\mathbf{V}_{\mathbf{0}}$ (nom)	3.3	5.0	5.0	12.0
$\mathbf{V a}_{\mathbf{a}} \mathbf{\text { min) }}$	1.89	1.88	2.18	2.43
$\mathbf{V}_{\mathbf{a}} \mathbf{(m a x)}$	6.07	11.25	8.5	22.12
$\mathbf{R}_{\mathbf{0}}(\mathbf{k} \mathbf{\Omega})$	66.5	150.0	90.9	243.0

Table 2

ISR ADJUSTMENT RESISTOR VALUES					ISR ADJUSTMENT RESISTOR VALUES (Cont)					
1Adc Rated	PT6102	PT6101		PT6103	1Adc Rated	PT6101		PT6103		
	PT6122	PT6121				PT6121				
2Adc Rated	PT6213		PT6212	PT6214	2Adc Rated		PT6212	PT6214		
	PT6223		PT6222				PT6222			
3Adc Rated	PT6303		PT6302	PT6304	3Adc Rated		PT6302	PT6304		
	PT6323		PT6322				P16322	12.0		
V_{0} (nom)	3.3	5.0		12.0	V_{0} (nom)	5.0				
$\mathrm{V}_{\mathbf{a}}$ (req.d)					$\mathbf{V a}_{\mathrm{a}} \text { (req.d) }$					
1.9	(30.9) $\mathrm{k} \Omega$	$(31.5) \mathrm{k} \Omega$			6.2	$156.0 \mathrm{k} \Omega$	$94.7 \mathrm{k} \Omega$	(207.0) $\mathrm{k} \Omega$		
2.0	(38.4)k Ω	(37.5) $\mathrm{k} \Omega$			6.4	$134.0 \mathrm{k} \Omega$	$81.2 \mathrm{k} \Omega$	(223.0) $\mathrm{k} \Omega$		
2.1	(47.1) $\mathrm{k} \Omega$	(44.0) $\mathrm{k} \Omega$			6.6	$117.0 \mathrm{k} \Omega$	$71.0 \mathrm{k} \Omega$	(241.0) $\mathrm{k} \Omega$		
2.2	(57.4)k Ω	(50.9)k Ω	(30.8) $\mathrm{k} \Omega$		6.8	$104.0 \mathrm{k} \Omega$	$63.1 \mathrm{k} \Omega$	(259.0) $\mathrm{k} \Omega$		
2.3	(69.8) $\mathrm{k} \Omega$	(58.3) $\mathrm{k} \Omega$	(35.4)k Ω		7.0	$93.8 \mathrm{k} \Omega$	$56.8 \mathrm{k} \Omega$	(279.0) $\mathrm{k} \Omega$		
2.4	(85.0) $\mathrm{k} \Omega$	(66.3) $\mathrm{k} \Omega$	(40.2) $\mathrm{k} \Omega$		7.2	85.2k Ω	$51.6 \mathrm{k} \Omega$	(301.0) $\mathrm{k} \Omega$		
2.5	(104.0)k Ω	(75.0) $\mathrm{k} \Omega$	(45.5) $\mathrm{k} \Omega$	(32.0)k k ,	7.4	$78.1 \mathrm{k} \Omega$	$47.3 \mathrm{k} \Omega$	(325.0) $\mathrm{k} \Omega$		
2.6	(128.0)k k	(84.4) $\mathrm{k} \Omega$	(51.1) $\mathrm{k} \Omega$	(34.9)k k	7.6	$72.1 \mathrm{k} \Omega$	$43.7 \mathrm{k} \Omega$	(351.0) $\mathrm{k} \Omega$		
2.7	(161.0) $\mathrm{k} \Omega$	(94.6) $\mathrm{k} \Omega$	(57.3) $\mathrm{k} \Omega$	(37.9) $\mathrm{k} \Omega$	7.8	$67.0 \mathrm{k} \Omega$	$40.6 \mathrm{k} \Omega$	(379.0) $\mathrm{k} \Omega$		
2.8	(206.0)k Ω	(106.0) $\mathrm{k} \Omega$	(64.0) $\mathrm{k} \Omega$	(40.9) $\mathrm{k} \Omega$	8.0	$62.5 \mathrm{k} \Omega$	$37.9 \mathrm{k} \Omega$	(410.0) $\mathrm{k} \Omega$		
2.9	(274.0k Ω	(118.) $\mathrm{k} \Omega$	(71.4) $\mathrm{k} \Omega$	(44.1) $\mathrm{k} \Omega$	8.2	$58.6 \mathrm{k} \Omega$	$35.5 \mathrm{k} \Omega$	(444.0) $\mathrm{k} \Omega$		
3.0	(388.0) $\mathrm{k} \Omega$	(131.0) $\mathrm{k} \Omega$	(79.5) $\mathrm{k} \Omega$	(47.3) $\mathrm{k} \Omega$	8.4	$55.1 \mathrm{k} \Omega$	$33.4 \mathrm{k} \Omega$	(483.0) $\mathrm{k} \Omega$		
3.1	(615.0) $\mathrm{k} \Omega$	(146.0) $\mathrm{k} \Omega$	(88.5) $\mathrm{k} \Omega$	(50.5) $\mathrm{k} \Omega$	8.6	$52.1 \mathrm{k} \Omega$		(525.0) $\mathrm{k} \Omega$		
3.2	(1300.0) $\mathrm{k} \Omega$	(163.0) $\mathrm{k} \Omega$	(98.5) $\mathrm{k} \Omega$	(53.8) $\mathrm{k} \Omega$	8.8	$49.3 \mathrm{k} \Omega$		(573.0) $\mathrm{k} \Omega$		
3.3		(181.0) $\mathrm{k} \Omega$	(110.0) $\mathrm{k} \Omega$	(57.3) $\mathrm{k} \Omega$	9.0	$46.9 \mathrm{k} \Omega$		(628.0) $\mathrm{k} \Omega$		
3.4	831.0k Ω	(202.0) $\mathrm{k} \Omega$	(122.0) $\mathrm{k} \Omega$	(60.8) $\mathrm{k} \Omega$	9.5	$41.7 \mathrm{k} \Omega$		(802.0) $\mathrm{k} \Omega$		
3.5	$416.0 \mathrm{k} \Omega$	(225.0) $\mathrm{k} \Omega$	(136.0) $\mathrm{k} \Omega$	(64.3) $\mathrm{k} \Omega$	10.0	$37.5 \mathrm{k} \Omega$		(1060.0)k Ω		
3.6	$227.0 \mathrm{k} \Omega$	(252.0) $\mathrm{k} \Omega$	(153.0) $\mathrm{k} \Omega$	(68.0) $\mathrm{k} \Omega$	10.5	$34.1 \mathrm{k} \Omega$		(1500.0)k Ω		
3.7	$208.0 \mathrm{k} \Omega$	(283.0) $\mathrm{k} \Omega$	(171.0) $\mathrm{k} \Omega$	(71.7) $\mathrm{k} \Omega$	11.0	$31.3 \mathrm{k} \Omega$				
3.8	$166.0 \mathrm{k} \Omega$	(319.0) $\mathrm{k} \Omega$	(193.0) $\mathrm{k} \Omega$	(75.6) $\mathrm{k} \Omega$	11.5					
3.9	$139.0 \mathrm{k} \Omega$	(361.0) $\mathrm{k} \Omega$	(219.0) $\mathrm{k} \Omega$	(79.5) $\mathrm{k} \Omega$	12.0					
4.0	$119.0 \mathrm{k} \Omega$	(413.0)k Ω	(250.0) $\mathrm{k} \Omega$	(83.5) $\mathrm{k} \Omega$	12.5			$608.0 \mathrm{k} \Omega$		
4.1	$104.0 \mathrm{k} \Omega$	(475.0) $\mathrm{k} \Omega$	(288.0) $\mathrm{k} \Omega$	(87.7) $\mathrm{k} \Omega$	13.0			304.0k Ω		
4.2	$92.4 \mathrm{k} \Omega$	(533.0) $\mathrm{k} \Omega$	(335.0) $\mathrm{k} \Omega$	(91.9) $\mathrm{k} \Omega$	13.5			$203.0 \mathrm{k} \Omega$		
4.3	$83.1 \mathrm{k} \Omega$	(654.0) $\mathrm{k} \Omega$	(396.0) $\mathrm{k} \Omega$	(96.3) $\mathrm{k} \Omega$	14.0			$152.0 \mathrm{k} \Omega$		
4.4	$75.6 \mathrm{k} \Omega$	(788.0)k k ,	(477.0) $\mathrm{k} \Omega$	(101.) $\mathrm{k} \Omega$	14.5			$122.0 \mathrm{k} \Omega$		
4.5	$69.3 \mathrm{k} \Omega$	(975.0) $\mathrm{k} \Omega$	(591.0) $\mathrm{k} \Omega$	(105.0) $\mathrm{k} \Omega$	15.0			$101.0 \mathrm{k} \Omega$		
4.6	$63.9 \mathrm{k} \Omega$	(1260.0) $\mathrm{k} \Omega$	(761.0) $\mathrm{k} \Omega$	(110.0) $\mathrm{k} \Omega$	15.5			$86.8 \mathrm{k} \Omega$		
4.7	$59.4 \mathrm{k} \Omega$	(1730.0) $\mathrm{k} \Omega$	(1050.0)k k ,	(115.0) $\mathrm{k} \Omega$	16.0			$75.9 \mathrm{k} \Omega$		
4.8	$55.4 \mathrm{k} \Omega$		(1610.0)k Ω	(120.0) $\mathrm{k} \Omega$	16.5			$67.5 \mathrm{k} \Omega$		
4.9	$52.0 \mathrm{k} \Omega$			(125.0) $\mathrm{k} \Omega$	17.0			$60.8 \mathrm{k} \Omega$		
5.0	$48.9 \mathrm{k} \Omega$			(130.0) $\mathrm{k} \Omega$	17.5			$55.2 \mathrm{k} \Omega$		
5.1	$46.2 \mathrm{k} \Omega$	$1880.0 \mathrm{k} \Omega$	$1140.0 \mathrm{k} \Omega$	(136.0) $\mathrm{k} \Omega$	18.0			$50.6 \mathrm{k} \Omega$		
5.2	$43.8 \mathrm{k} \Omega$	$937.0 \mathrm{k} \Omega$	$568.0 \mathrm{k} \Omega$	(141.0) $\mathrm{k} \Omega$	18.5			$46.7 \mathrm{k} \Omega$		
5.3	$41.6 \mathrm{k} \Omega$	$625.0 \mathrm{k} \Omega$	$379.0 \mathrm{k} \Omega$	(147.0) $\mathrm{k} \Omega$	19.0			$43.4 \mathrm{k} \Omega$		
5.4	$39.6 \mathrm{k} \Omega$	$469.0 \mathrm{k} \Omega$	$284.0 \mathrm{k} \Omega$	(153.0) $\mathrm{k} \Omega$	19.5			$40.5 \mathrm{k} \Omega$		
5.5	$37.8 \mathrm{k} \Omega$	$375.0 \mathrm{k} \Omega$	$227.0 \mathrm{k} \Omega$	(159.0) $\mathrm{k} \Omega$	20.0			$38.0 \mathrm{k} \Omega$		
5.6	$36.1 \mathrm{k} \Omega$	$313.0 \mathrm{k} \Omega$	$189.0 \mathrm{k} \Omega$	(165.0)k Ω	20.5			$35.7 \mathrm{k} \Omega$		
5.7	$34.6 \mathrm{k} \Omega$	$268.0 \mathrm{k} \Omega$	$162.0 \mathrm{k} \Omega$	(172.0) $\mathrm{k} \Omega$	21.5			$33.8 \mathrm{k} \Omega$		
5.8	$33.3 \mathrm{k} \Omega$	$234.0 \mathrm{k} \Omega$	$142.0 \mathrm{k} \Omega$	(178.0) $\mathrm{k} \Omega$	21.5			$32.0 \mathrm{k} \Omega$		
5.9	$32.0 \mathrm{k} \Omega$	$208.0 \mathrm{k} \Omega$	$126.0 \mathrm{k} \Omega$	(185.0)k Ω	22.0			$30.4 \mathrm{k} \Omega$		
6.0	$30.8 \mathrm{k} \Omega$	$188.0 \mathrm{k} \Omega$	$114.0 \mathrm{k} \Omega$	(192.0) $\mathrm{k} \Omega$						
R1 = (Red) \quad R2 $=$ Black										

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TIPRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

[^0]: * ISR will operate down to no load with reduced specifications.

