
PT5060

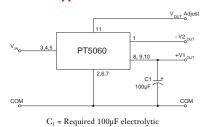
Series

+5V to  $\pm 12V/15V$  9W DUAL OUTPUT **INTEGRATED SWITCHING REGULATOR** 

> **PT5061**□ = ±12 Volts **PT5062**□ = ±15 Volts

**Revised 5/15/98** 



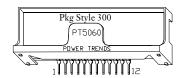

- **Dual Outputs:** 
  - +12V @ 0.5A
  - -12V @ 0.25A
  - Wide Input Voltage Range:
- 85% Efficiency
- Adjustable Output Voltage
- Laser-trimmed Output Voltage

The Power Trends' PT5060 Series is a dual output Integrated Switching

Regulator (ISR) designed for use in +5 volt systems that require low power ±12 or ±15 volt rails. They can be used to power such application circuits as D/A and A/D converters, Op Amps, and interface logic. Both output voltages can be easily adjusted with one external resistor. These ISRs are offered in a low profile 12-pin SIP package in either vertical or horizontal through-hole or SMD-configurations.

Please note that this product does not include short-circuit protection.

#### **Standard Application**




#### **Pin-Out Information Ordering Information**

| Pin | Function                |
|-----|-------------------------|
| 1   | $-V2_{\mathrm{out}}$    |
| 2   | GND                     |
| 3   | $V_{in}$                |
| 4   | $V_{in}$                |
| 5   | Vin                     |
| 6   | GND                     |
| 7   | GND                     |
| 8   | $+V1_{out}$             |
| 9   | $+V1_{out}$             |
| 10  | $+V1_{out}$             |
| 11  | V <sub>out</sub> Adjust |
| 12  | Do Not Connect          |

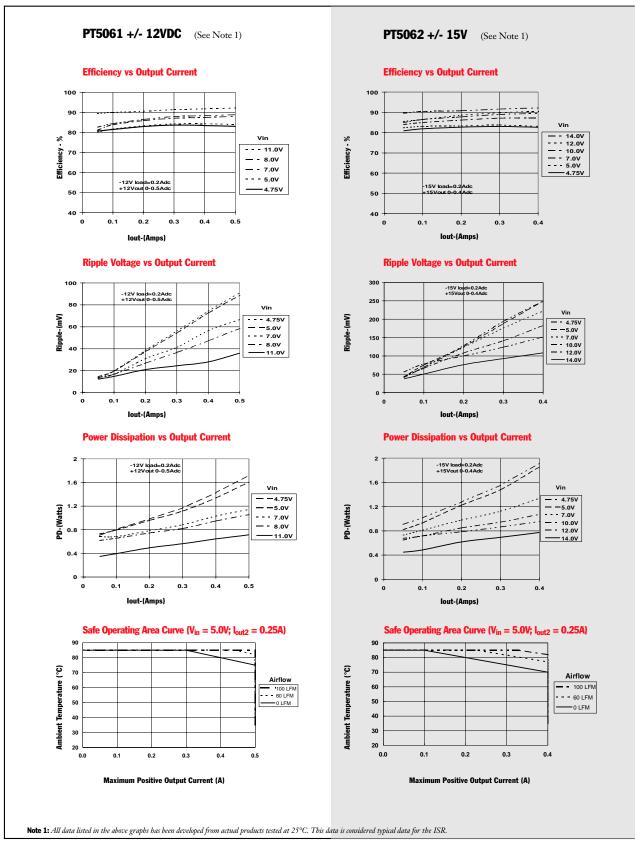
# PT Series Suffix (PT1234X)

| Case/Pin<br>Configuration |   |
|---------------------------|---|
| Vertical Through-Hole     | N |
| Horizontal Through-Hole   | Α |
| Horizontal Surface Mount  | C |



#### **Specifications**

| Characteristics                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |                                              | PT5060        | ERIES                 |                |                                             |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------|---------------|-----------------------|----------------|---------------------------------------------|
| (T <sub>a</sub> = 25°C unless noted)            | Symbols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conditions                                                                 |                                              | Min           | Тур                   | Max            | Units                                       |
| Output Current                                  | $I_{o}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Over V <sub>in</sub> range                                                 | V <sub>o</sub> =+12V<br>V <sub>o</sub> =-12V | 0.05<br>0.05* | =                     | 0.50<br>0.25   | A<br>A                                      |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            | $V_o=+15V$<br>$V_o=-15V$                     | 0.05<br>0.05* | =                     | 0.40<br>0.20   | A<br>A                                      |
| Current Limit**                                 | $I_{cl}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $V_{\rm in}$ = +5 $V$                                                      |                                              | _             | 1.5 I <sub>o</sub> ma | x** —          | A                                           |
| Inrush Current                                  | $I_{ m ir}$ $t_{ m r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $V_{in}$ = +5V @ max $I_o$<br>On start up                                  |                                              | _             | 5.5<br>2              | _              | A<br>mSec                                   |
| Input Voltage Range                             | $ m V_{in}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $I_o = 0.1 \text{ to } I_o \text{max}$                                     |                                              | 4.75          |                       | $V_{o}$ -1 $V$ | V                                           |
| Output Voltage Tolerance                        | $\Delta V_{\rm o}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Over $V_{in}$ and $I_o$ ranges $T_A$ = 0°C to +70°C                        | $^{+}\mathrm{V_{o}}$ $^{-}\mathrm{V_{o}}$    | _             | ±1.5<br>±5            | ±3.0<br>±10    | $^{ m \%V_o}_{ m V_o}$                      |
| Line Regulation                                 | Reg <sub>line</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Over V <sub>in</sub> range, I <sub>o</sub> =0.5A,                          | $V_o = +12V$                                 | _             | ±0.5                  | ±1.0           | $%V_{o}$                                    |
| Load Regulation                                 | Reg <sub>load</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.1 < I_o < I_o max, V_{in} = +5V$                                        | $V, V_{o} = +12V$                            | _             | ±0.5                  | ±1.0           | $%V_{o}$                                    |
| V <sub>o</sub> Ripple/Noise                     | $V_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $V_{in}$ = +5 $V$ , $I_o$ = $I_o$ max                                      | $^{+}\mathrm{V_{o}}$ $^{-}\mathrm{V_{o}}$    | _             | ±1.5<br>±2.0          | ±3<br>±3       | $\mathrm{^{\%}V_{o}}$ $\mathrm{^{\%}V_{o}}$ |
| Transient Response                              | $egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$ | 25% load change<br>V <sub>o</sub> over/undershoot                          |                                              | _             | 100<br>3.0            | 5.0            | μSec<br>%V <sub>o</sub>                     |
| Efficiency                                      | η                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $V_{in}$ = +5V, $I_o$ =0.25A each of                                       | output                                       | _             | 85                    | _              | %                                           |
| Switching Frequency                             | $f_{o}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Over V <sub>in</sub> and I <sub>o</sub> ranges                             |                                              | _             | 650                   | _              | kHz                                         |
| Absolute Maximum<br>Operating Temperature Range | $T_a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                          |                                              | 0             | -                     | +85            | °C                                          |
| Recommended Operating<br>Temperature Range      | $T_a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Free Air Convection (40-<br>Over V <sub>in</sub> and I <sub>o</sub> ranges | 60LFM)                                       | 0             | _                     | +65***         | °C                                          |
| Storage Temperature                             | $T_s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            |                                              | -40           |                       | +125           | °C                                          |
| Mechanical Shock                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Per Mil-STD-883D, Met<br>1 msec, Half Sine, mount                          | hod 2002.3,<br>ed to a fixture               | _             | 500                   | _              | G's                                         |
| Mechanical Vibration                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Per Mil-STD-883D, Met<br>20-2000 Hz, Soldered in                           |                                              | _             | 15                    | _              | G's                                         |
| Weight                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |                                              | _             | 6.5                   | _              | grams                                       |


<sup>\*</sup> Do not operate below minimum load. \*\* Boost topology ISRs are not short circuit protected. \*\*\* See SOA Curves.

DATA SHEETS

PT5060

Series

#### CHARACTERISTIC DATA



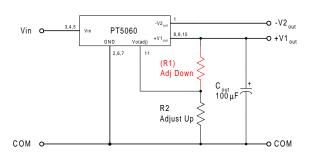
#### **More Application Notes**

### **Adjusting the Output Voltage of the PT5060 Dual Output Boost Converter Series**

The dual output voltage of the Power Trends PT5060 Series ISRs can be adjusted higher or lower than the factory trimmed pre-set voltage with the addition of a single external resistor. Table 1 accordingly gives the applicable adjustment range for each model in the series as V<sub>a</sub> (min) and V<sub>a</sub> (max).

Adjust Up: An increase in the output voltage is obtained by adding a resistor R2, between pin 11 (Vo adjust) and pins 2, 6, or 7 (GND).

**Adjust Down:** Add a resistor (R1), between pin 11 (V<sub>o</sub> adjust) and pins 8, 9 or 10 (V1<sub>out</sub>).


Refer to Figure 1 and Table 2 for both the placement and value of the required resistor, either (R1) or R2 as appropriate.

- 1. Both the positive and negative voltage outputs from the ISR are adjusted simultaneously.
- 2. Use only a single 1% resistor in either the (R1) or R2 location. Place the resistor as close to the ISR as possible.
- Never connect capacitors from V<sub>0</sub> adjust to either GND or  $V_o$ . Any capacitance added to the  $V_o$  adjust pin will affect the stability of the ISR.
- 4. An increase in the output voltage must be accompanied by a corresponding reduction in the specified maximum current at each output. For V1<sub>out</sub> and –V2<sub>out</sub>, the revised maximum output current must be reduced to the equivalent of 6Watts and 3Watts respectively. i.e.

where  $V_a$  is the adjusted output voltage.

5. Adjustments to the output voltage will also limit the maximum input voltage that can be applied to the ISR. The maximum input voltage that may be applied is limited to (Vout - 1)Vdc or 14Vdc, whichever is less.

Figure 1



The values of (R1) [adjust down], and R2 [adjust up], can also be calculated using the following formulae.

(R1) = 
$$\frac{3.65 (V_a - 2.5)}{(V_o - V_a)} - 0.1$$
 kΩ

R2 = 
$$\frac{9.125}{V_2 - V_0}$$
 - 0.1 k $\Omega$ 

Where: Vo = Original output voltage V<sub>a</sub> = Adjusted output voltage

Table 1

| PT5060 ADJUSTMENT AND FORMULA PARAMETER |        |        |  |  |
|-----------------------------------------|--------|--------|--|--|
| Series Pt #                             | PT5061 | PT5062 |  |  |
| Vo (nom)                                | ±12.0V | ±15.0V |  |  |
| V <sub>a</sub> (min)                    | ± 7.5V | ± 7.5V |  |  |
| Va (max)                                | ±14.0V | ±20.0V |  |  |

Table 2

| Series Pt #            | PT5061                      | PT5062                         |
|------------------------|-----------------------------|--------------------------------|
| Current                | 0.5/0.25Adc                 | 0.4/0.2Adc                     |
| V <sub>o</sub> (nom)   | ±12.0Vdc                    | ±15.0Vdc                       |
| V <sub>a</sub> (req'd) |                             |                                |
| 7.0                    |                             |                                |
| 7.5                    | (4.0)k <b>Ω</b>             | (2.3)k <b>Ω</b>                |
| 8.0                    | $(4.9)$ k $\Omega$          | $(2.8)$ k $\Omega$             |
| 8.5                    | $(6.2)$ k $\mathbf{\Omega}$ | $(3.3)$ k $\Omega$             |
| 9.0                    | $(7.8)$ k $\Omega$          | (3.9)k <b>Ω</b>                |
| 9.5                    | $(10.1)$ k $\Omega$         | $(4.6)$ k $\Omega$             |
| 10.0                   | $(13.6)$ k $\Omega$         | $(5.4)$ k $\Omega$             |
| 10.5                   | (19.4)k <b>Ω</b>            | $(6.4)$ k $\Omega$             |
| 11.0                   | (30.9)k <b>Ω</b>            | $(7.7)$ k $\mathbf{\Omega}$    |
| 11.5                   | $(65.6)$ k $\Omega$         | $(9.3)$ k $\Omega$             |
| 12.0                   |                             | (11.5)k <b>Ω</b>               |
| 12.5                   | 18.2k <b>Ω</b>              | $(14.5)$ k $\mathbf{\Omega}$   |
| 13.0                   | 9.0k <b>Ω</b>               | (19.1)k <b>Ω</b>               |
| 13.5                   | $6.0$ k $\mathbf{\Omega}$   | $(26.7)$ k $\mathbf{\Omega}$   |
| 14.0                   | 4.5k <b>Ω</b>               | (41.9)k <b>Ω</b>               |
| 14.5                   |                             | (87.5)k <b>Ω</b>               |
| 15.0                   |                             |                                |
| 15.5                   |                             | 18.2k <b>Ω</b>                 |
| 16.0                   |                             | 9.0k <b>Ω</b>                  |
| 16.5                   |                             | $6.0$ k $\Omega$               |
| 17.0                   |                             | $4.5k\Omega$                   |
| 17.5                   |                             | 3.6k <b>Ω</b>                  |
| 18.0                   |                             | 2.9k <b>Ω</b>                  |
| 18.5                   |                             | 2.5k <b>Ω</b>                  |
| 19.0                   |                             | $2.2$ k $\Omega$               |
| 19.5                   |                             | 1.9k <b>Ω</b>                  |
| 20.0                   |                             | $1.7\mathrm{k}\mathbf{\Omega}$ |
| R1 = (Red)             | R2 = Black                  |                                |

## **IMPORTANT NOTICE**

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated