- 3-State Outputs Interface Directly With System Bus
- Provide Bus Interface From Multiple Sources in High-Performance Systems
- Package Options Include Plastic Small-Outline (D) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description

These data selectors/multiplexers are designed to multiplex signals from 4-bit data sources to 4 -output data lines in bus-organized systems. The 3 -state outputs do not load the data lines when the output-enable $(\overline{\mathrm{OE}})$ input is at a high logic level.

The SN54ALS257A and SN54ALS258A are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ALS257A, SN74ALS258A, SN74AS257, and SN74AS258 are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS				OUTPUT Y	
	$\overline{\text { A/B }}$	DATA		SN54ALS257A SN74ALS257A SN74AS257	SN54ALS258A SN74ALS258A SN74AS258
		A	B		
H	X	X	X	Z	Z
L	L	L	X	L	H
L	L	H	X	H	L
L	H	X	L	L	H
L	H	X	H	H	L

SN54ALS257A, SN54ALS258A, SN74ALS257A, SN74ALS258A, SN74AS257, SN74AS258 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

WITH 3-STATE OUTPUTS

SDAS124C - APRIL 1982 - REVISED AUGUST 1996

logic symbols \dagger

SN54ALS258A, SN74ALS258A, SN74AS258

† These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the D, J, and N packages.
logic diagrams (positive logic)

SN54ALS258A, SN74ALS258A, SN74AS258

Pin numbers shown are for the D, J, and N packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage, $\mathrm{V}_{\text {CC }}$. 7 V V	
Input voltage, V_{I}. 7 . V	
Voltage applied to a disabled 3-state output . 5.5.5 V	
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) (see Note 1): D package 1.3 W	
N package	1.1 W
Operating free-air temperature range, T_{A} : SN54ALS257A, SN54ALS258A $\ldots \ldots \ldots \ldots . .{ }^{\text {a }}$, $5^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	
SN74ALS257A, SN74ALS258A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils, except for the N package, which has a trace length of zero.
recommended operating conditions

SN54ALS257A, SN54ALS258A, SN74ALS257A, SN74ALS258A, SN74AS257, SN74AS258 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

SDAS124C - APRIL 1982 - REVISED AUGUST 1996
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54ALS257A SN54ALS258A			SN74ALS257A SN74ALS258A			UNIT		
		MIN	TYPt	MAX	MIN	TYPt	MAX					
V_{IK}				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$			-1.5			-1.5	V
V_{OH}		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ,	$\mathrm{I} \mathrm{OH}=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-2$			$\mathrm{V}_{\mathrm{CC}}-2$			v		
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	$\mathrm{IOH}=-1 \mathrm{~mA}$	2.4	3.3							
		$\mathrm{I}^{\mathrm{OH}}=-2.6 \mathrm{~mA}$				2.4	3.2					
V_{OH}			$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	$\mathrm{IOL}=12 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V	
		$\mathrm{IOL}=24 \mathrm{~mA}$						0.35	0.5			
IOZH		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
IOZL		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20			-20	$\mu \mathrm{A}$		
1		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1			0.1	mA		
${ }_{\text {IIH }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
IIL		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.1			-0.1	mA		
10^{\ddagger}		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$	-20		-112	-30		-112	mA		
ICC	SN54ALS257A, SN74ALS257A	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$	Outputs high		3	8		3	6	mA		
			Outputs low		8	12		8	12			
			Outputs disabled		9	14		9	14			
	SN54ALS258A, SN74ALS258A	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$	Outputs high		2.5	5		2.5	4			
			Outputs low		7	11		7	11			
			Outputs disabled		8	13		8	13			

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.
switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\operatorname{MIN} \text { to MAX§ } \end{aligned}$				UNIT
			SN54ALS257A		SN74ALS257A		
			MIN	MAX	MIN	MAX	
tPLH	A or B	Any Y	2	12	2	10	ns
tPHL			2	14	2	12	
${ }_{\text {tPLH }}$	$\overline{\mathrm{A}} / \mathrm{B}$	Any Y	4	21	6	18	ns
tPHL			6	25	6	22	
tPZH	$\overline{\mathrm{OE}}$	Any Y	3	20	4	16	ns
tPZL			4	22	5	18	
tPHZ	$\overline{\mathrm{OE}}$	Any Y	2	12	2	10	ns
tPLZ			2	35	4	15	

[^0]
switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \dagger \end{aligned}$				UNIT
			SN54AL	258A	SN74AL	258A	
			MIN	MAX	MIN	MAX	
tPLH	A or B	Any Y	1	12	2	8	ns
tphL			2	9	2	7	
tPLH	$\overline{\text { A }}$ / ${ }^{\text {d }}$	Any Y	4	28	5	25	ns
tPHL			5	25	6	20	
tPZH	$\overline{\mathrm{OE}}$	Any Y	3	20	4	18	ns
tpZL			5	21	5	18	
tPHZ	$\overline{\mathrm{OE}}$	Any Y	2	12	2	10	ns
tplz			3	37	4	18	

\dagger For conditions shown MIN or MAX, use the appropriate value specified under recommended operating conditions.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Supply voltage, V_{CC} 7 V
Input voltage, $\mathrm{V}_{\text {I }}$ 7 V
Voltage applied to a disabled 3-state output 5.5 V
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) (see Note 1): D package 1.3 W
N package 1.1 W
Operating free-air temperature range, $\mathrm{T}_{\mathrm{A}}:$ SN74AS257, SN74AS258 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils, except for the N package, which has a trace length of zero.
recommended operating conditions

		SN74AS257 SN74AS258	
	UNIT		
		MIN	NOM

SN54ALS257A, SN54ALS258A, SN74ALS257A, SN74ALS258A, SN74AS257, SN74AS258 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

SDAS124C - APRIL 1982 - REVISED AUGUST 1996
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		$\begin{aligned} & \text { SN74AS257 } \\ & \text { SN74AS258 } \end{aligned}$			UNIT		
		MIN	TYP†	MAX					
V_{IK}				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$			-1.2	V
V_{OH}		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ,	$\mathrm{IOH}=-2 \mathrm{~mA}$	V_{CC}-2			V		
		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$	2.4	3.2				
VOL		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=48 \mathrm{~mA}$		0.35	0.5	V		
IOZH		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$		
IOZL		$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-50	$\mu \mathrm{A}$		
I	A, B, or $\overline{\mathrm{OE}}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA		
	$\overline{\mathrm{A}} / \mathrm{B}$					0.2			
${ }^{1} \mathrm{H}$	A, B, or $\overline{\mathrm{OE}}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$		
	$\overline{\mathrm{A}} / \mathrm{B}$					40			
IIL	A, B, or $\overline{O E}$	$V_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.5	mA		
	$\overline{\text { A } / B ~}$					-1			
10^{\ddagger}		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$	-30		-112	mA		
ICC	SN74AS257	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$	Outputs high		12.1	19.7	mA		
			Outputs low		19	30.6			
			Outputs disabled		19.7	31.9			
	SN74AS258	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$	Outputs high		8.4	13.5			
			Outputs low		15.2	24.6			
			Outputs disabled		15.5	25.2			

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.
switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to MAX } \dagger \end{aligned}$	UNIT
			SN74AS257	
			MIN MAX	
tPLH	A or B	Any Y	15.5	ns
tPHL			16	
tPLH	$\overline{\mathrm{A}} / \mathrm{B}$	Any Y	211	ns
tPHL			210	
tPZH	$\overline{\mathrm{OE}}$	Any Y	$2 \quad 7.5$	ns
tPZL			29.5	
tPHZ	$\overline{\mathrm{OE}}$	Any Y	1.5	ns
tPLZ			27	

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MN} \text { to MAX } \dagger \end{aligned}$	UNIT
			SN74AS258	
			MIN MAX	
tPLH	A or B	Any Y	1	ns
tPHL			1	
tPLH	\bar{A} / B	Any Y	29.5	ns
tPHL			210	
tPZH	$\overline{\mathrm{OE}}$	Any Y	28	ns
tpZL			$2 \quad 10$	
tPHZ	$\overline{\mathrm{OE}}$	Any Y	$1.5 \quad 6$	ns
tplZ			$2 \quad 6.5$	

[^1]
PARAMETER MEASUREMENT INFORMATION

 SERIES 54ALS/74ALS AND 54AS/74AS DEVICES

LOAD CIRCUIT FOR 3-STATE OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATIONS

ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. When measuring propagation delay items of 3-state outputs, switch S 1 is open.
D. All input pulses have the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2 \mathrm{~ns}$, duty cycle $=50 \%$.
E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

[^0]: § For conditions shown MIN or MAX, use the appropriate value specified under recommended operating conditions.

[^1]: † For conditions shown MIN or MAX, use the appropriate value specified under recommended operating conditions.

