SN54F251B, SN74F251B 1-OF-8 DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS
 SDFS066A - MARCH 1987 - REVISED OCTOBER 1993

- 3-State Versions of SN54F151B and SN74F151B
- 3-State Outputs Interface Directly With System Bus
- Performs Parallel-to-Serial Conversion
- Complementary Outputs Provide True and Inverted Data
- Package Options Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

description

These data selectors/multiplexers contain full binary decoding to select one of eight data sources and feature strobe-controlled complementary outputs. The 3-state outputs can interface with and drive data lines of busorganized systems. When the strobe $(\overline{\mathrm{G}})$ input is high, both outputs are in a high-impedance state in which both the upper and lower transistors of each totem-pole output are off, and the output neither drives nor loads the bus significantly.

The SN54F251B is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74F251B is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN54F251B . . . J PACKAGE SN74F251B . . . D OR N PACKAGE (TOP VIEW)

SN54F251B . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

FUNCTION TABLE

INPUTS				OUTPUTS	
SELECT			STROBE		
C	B	A	$\overline{\mathrm{G}}$	Y	W
X	X	X	H	Z	Z
L	L	L	L	D0	$\overline{\mathrm{DO}}$
L	L	H	L	D1	$\overline{\mathrm{D} 1}$
L	H	L	L	D2	$\overline{\mathrm{D} 2}$
L	H	H	L	D3	$\overline{\mathrm{D} 3}$
H	L	L	L	D4	$\overline{\mathrm{D} 4}$
H	L	H	L	D5	$\overline{\mathrm{D} 5}$
H	H	L	L	D6	D6
H	H	H	L	D7	$\overline{\text { D7 }}$

D0, $D 1, \ldots$ D7 = the level of the respective D input.

SN54F251B, SN74F251B

1-OF-8 DATA SELECTORS/MULTIPLEXERS
WITH 3-STATE OUTPUTS
SDFS066A - MARCH 1987 - REVISED OCTOBER 1993

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the D, J, and N packages.

SN54F251B, SN74F251B
 1-OF-8 DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS

logic diagram (positive logic)

Pin numbers shown are for the D, J, and N packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

[^0]
SN54F251B, SN74F251B

1-OF-8 DATA SELECTORS/MULTIPLEXERS

WITH 3-STATE OUTPUTS
SDFS066A - MARCH 1987 - REVISED OCTOBER 1993

recommended operating conditions

		SN54F251B			SN74F251B			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High-level input voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8			0.8	V
IIK	Input clamp current			-18			-18	mA
IOH	High-level output current			-3			-3	mA
${ }^{\text {I OL }}$	Low-level output current			20			24	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SN54F251B			SN74F251B			UNIT
			MIN	TYP†	MAX	MIN	TYP†	MAX	
VIK	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\boldsymbol{I}=-18 \mathrm{~mA}$			-1.2			-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I}^{\mathrm{OH}}=-1 \mathrm{~mA}$	2.5	3.4		2.5	3.4		V
		$\mathrm{IOH}=-3 \mathrm{~mA}$	2.4	3.3		2.4	3.3		
	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$ to -3 mA				2.7			
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I}^{\mathrm{OL}}=20 \mathrm{~mA}$		0.3	0.5				V
		$\mathrm{IOL}=24 \mathrm{~mA}$					0.35	0.5	
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50			50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50			-50	$\mu \mathrm{A}$
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1			0.1	mA
1 IH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
IIL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$			-0.6			-0.6	mA
OS ${ }^{\ddagger}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0$	-60		-150	-60		-150	mA
${ }^{\text {I CC }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V},$ See Note 2	Condition A		15	22		15	22	mA
		Condition B		16	24		16	24	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
NOTE 2: ICC is measured with the outputs open under the following conditions:
A. Select input and data input at 4.5 V , output control grounded
B. All inputs at 4.5 V
switching characteristics (see Note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{gathered} \mathrm{V}_{\mathbf{C C}}=5 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R} 1=500 \Omega, \\ \mathrm{R} 2=500 \Omega, \\ \mathrm{~T}_{\mathbf{A}}=25^{\circ} \mathrm{C} \\ \hline \text { ' } \mathbf{F} 251 \mathrm{~B} \end{gathered}$			$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to MAX } \dagger \\ & \hline \end{aligned}$				UNIT
						SN54	51B	SN74F	51B	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A, B, or C	W	3.5	5.4	9	3.5	11.5	3.5	9.5	ns
tPHL			2.5	4.4	7.5	2.5	8	2.5	7.5	
tPLH	A, B, or C	Y	4.5	6.2	10.5	3.5	14	4	12.5	ns
tPHL			4	6	8.5	3	10.9	3.5	9	
tPLH	Any D	W	2.5	3.7	6.5	1.8	8	2	7	ns
tPHL			1	1.9	4	1	6	1	5	
tPLH	Any D	Y	3	3.8	7	2.3	9	2.3	8	ns
tPHL			3	4.5	7	2.3	9	2.5	8	
tPZH	$\overline{\mathrm{G}}$	W	2.5	3.6	6	2	7	2	7	ns
tPZL			2.5	3.8	6	2.5	7.5	2.5	6.5	
tPHZ	$\overline{\mathrm{G}}$	W	1.9	2.5	5.5	1.4	6	1.5	6	ns
tpLZ			1	2.4	4.5	1	5	1	4.5	
tpZH	$\overline{\mathrm{G}}$	Y	3.4	4.8	7	2.7	8.5	2.9	8.5	ns
tPZL			2.9	4	7.5	2.6	9	2.6	8	
tPHZ	G	Y	1.9	2.5	5.5	1.7	5.5	1.8	5.5	ns
tplZ			1	2.3	4.5	1	5.5	1	4.5	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. NOTE 3: Load circuits and waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

[^0]: \dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 NOTE 1: The input voltage ratings may be exceeded provided the input current ratings are observed.

