UNITRODE

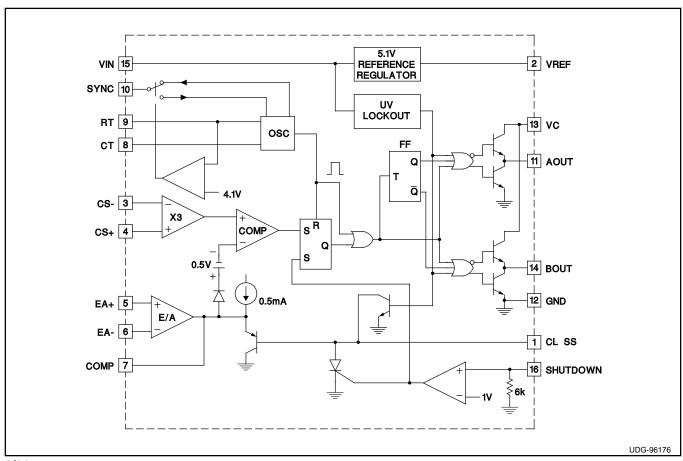
UC1856 UC2856 UC3856

Improved Current Mode PWM Controller

FEATURES

- Pin-for-Pin Compatible With the UC3846
- 65ns Typical Delay From Shutdown to Outputs, and 50ns Typical Delay From Sync to Outputs
- Improved Current Sense Amplifier With Reduced Noise Sensitivity
- Differential Current Sense with 3V Common Mode Range
- Trimmed Oscillator Discharge Current for Accurate Deadband Control
- Accurate 1V Shutdown Threshold
- High Current Dual Totem Pole Outputs (1.5A peak)
- TTL Compatible Oscillator SYNC Pin Thresholds
- 4kV ESD Protection

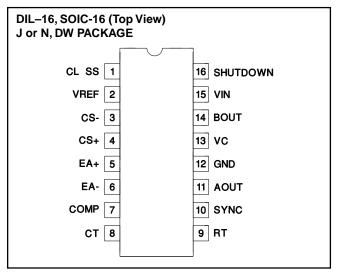
DESCRIPTION

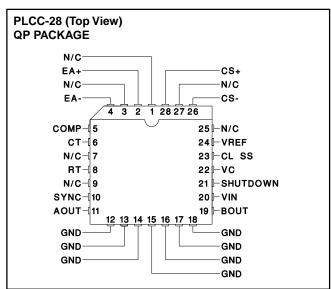

The UC3856 is a high performance version of the popular UC3846 series of current mode controllers, and is intended for both design upgrades and new applications where speed and accuracy are important. All input to output delays have been minimized, and the current sense output is slew rate limited to reduce noise sensitivity. Fast 1.5A peak output stages have been added to allow rapid switching of power FETs.

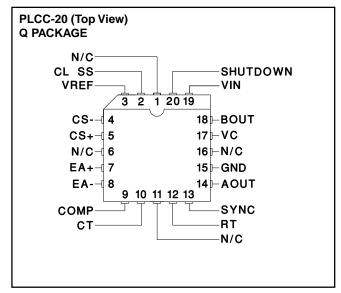
A low impedance TTL compatible sync output has been implemented with a tri-state function when used as a sync input.

Internal chip grounding has been improved to minimize internal "noise" caused when driving large capacitive loads. This, in conjunction with the improved differential current sense amplifier results in enhanced noise immunity.

Other features include a trimmed oscillator current (8%) for accurate frequency and dead time control; a 1V, 5% shutdown threshold; and 4kV minimum ESD protection on all pins.


BLOCK DIAGRAM




ABSOLUTE MAXIMUM RATINGS

Supply Voltage	+40V
Collector Supply Voltage	
Output Current, Source or Sink	
DC	0.5A
Pulse (0.5μs)	2.0A
Error Amp Inputs	0.3V to +VIN
Shutdown Input	0.3V to +10V
Current Sense Inputs	0.3V to +3V
SYNC Output Current	
Error Amplifier Output Current	
Soft Start Sink Current	
Oscillator Charging Current	
Power Dissipation at T _A = 25°C (Note 2)	
Power Dissipation at Tc = 25°C (Note 2)	
Junction Temperature	55°C to +150°C
Storage Temperature Range	
Lead Temperature (Soldering, 10 sec.)	
All voltages are with respect to Ground. Curr	
into, negative out of the specified terminal. C	
section of databook for thermal limitations ar	nd considerations of
package.	

CONNECTION DIAGRAMS

ELECTRICAL CHARACTERISTICS Unless otherwise stated, these specifications apply for $T_A = -55^{\circ}C$ to $+125^{\circ}C$ for UC1856; $-40^{\circ}C$ to $+85^{\circ}C$ for the UC2856; and $0^{\circ}C$ to $+70^{\circ}C$ for the UC3856, VIN = 15V, RT = 10k, CT = 1nF, $T_A = T_J$.

PARAMETER	TEST CONDITIONS	UC1	UC1856/UC2856			UC3856		
		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Reference Section		•						•
Output Voltage	T _J = 25°C, lo = 1mA	5.05	5.10	5.15	5.00	5.10	5.20	V
Line Regulation	VIN = 8V to 40V			20			20	mV
Load Regulation	lo = −1mA to −10mA			15			15	mV
Total Output Variation	Line, Load, and Temperature	5.00		5.20	4.95		5.25	V
Output Noise Voltage	10Hz < f < 10kHz, T _J = 25°C		50			50		μV
Long Term Stability	T _J = 125°C, 1000 Hrs (Note 2)		5	25		5	25	mV
Short Circuit Current	VREF = 0V	-25	-45	-65	-25	-45	-65	mA
Oscillator Section	·							
Initial Accuracy	T _J = 25°C	180	200	220	180	200	220	kHz
	Over Operating Range	170		230	170		230	kHz

ELECTRICAL CHARACTERISTICS (cont.) Unless otherwise stated, these specifications apply for $TA = -55^{\circ}C$ to $+125^{\circ}C$ for UC1856; $-40^{\circ}C$ to $+85^{\circ}C$ for the UC2856; and $0^{\circ}C$ to $+70^{\circ}C$ for the UC3856, VIN = 15V, RT = 10k, CT = 1nF, TA = TJ.

PARAMETER	TEST CONDITIONS	UC1856/UC2856			UC3856			
		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Oscillator Section (cont.)							•	•
Voltage Stability	VIN = 8V to 40V			2			2	%
Discharge Current	T _J = 25°C, V _C T = 2V	7.5	8.0	8.8	7.5	8.0	8.8	mΑ
	Vct = 2V	6.7	8.0	8.8	6.7	8.0	8.8	mΑ
Sync Output High Level	Io = -1mA	2.4	3.6		2.4	3.6		V
Sync Output Low Level	Io = +1mA		0.2	0.4		0.2	0.4	V
Sync Input High Level	CT = 0V, RT = VREF	2.0	1.5		2.0	1.5		V
Sync Input Low Level	CT = 0V, RT = VREF		1.5	0.8		1.5	0.8	V
Sync Input Current	CT = 0V, RT = VREF		1	10		1	10	μΑ
,	VSYNC = 5V							
Sync Delay to Outputs	CT = 0V, RT = VREF		50	100		50	100	ns
	Vsync = 0.8V to 2V							
Error Amplifier Section						I	1	
Input Offset Voltage	Vcm = 2V			5			10	mV
Input Bias Current				-1			-1	μΑ
Input Offset Current				500			500	nA
Common Mode Range	VIN = 8V to 40V	0		VIN – 2	0		VIN – 2	V
Open Loop Gain	Vo = 1.2V to 3V	80	100		80	100		dB
Unity Gain Bandwidth	T _J = 25°C	1	1.5		1	1.5		MHz
CMRR	VcM = 0V to 38V, VIN = 40V	75	100		75	100		dB
PSRR	VIN = 8V to 40V	80	100		80	100		dB
Output Sink Current	VID = -15mV, VCOMP = 1.2V	5	10		5	10		mA
Output Source Current	VID = 15mV, VCOMP = 2.5V	-0.4	-0.5		-0.4	-0.5		mA
Output High Level	VID = 50mV, RL (COMP) = 15k	4.3	4.6	4.9	4.3	4.6	4.9	V
Output Low Level	VID = -50mV, RL (COMP) = 15k		0.7	1		0.7	1	V
Current Sense Amplifier Section							1	
Amplifier Gain	Vcs-= 0V, CL SS Open (Notes 3,4)	2.5	2.75	3.0	2.5	2.75	3.0	V/V
Maximum Differential	CL SS Open (Note 3)	1.1	1.2		1.1	1.2		V
Input Signal (Vcs+ – Vcs-)	RL (COMP) = 15k							
	Vcl ss = 0.5V			25		-	25	mV
Input Offset Voltage	COMP Open (Note 3)		5	35		5	35	IIIV
CMRR	VcM = 0V to 3V	60			60			dB
PSRR	VIN = 8V to 40V	60			60			dB
Input Bias Current	Vcl ss = 0.5V, COMP Open (Note 3)	- 00		-1	-3	-1	-3	μА
Input Offset Current	VcL ss = 0.5V, COMP Open (Note 3)			1			1	mΑ
Input Common Mode Range	VOL 33 = 0.0 V, COMIT OPEN (Note 3)	0		3	0		3	V
Delay to Outputs	VEA+ = VREF, EA- = 0V		120	250		120	250	ns
	CS+ - CS- = 0V to 1.5V		1.20	200		120	200	''
Current Limit Adjust Section	00T - 00 0V to 1.0V			1			1	l
Current Limit Offset	Vcs-=0V	0.43	0.5	0.57	0.43	0.5	0.57	V
	Vcs+ = 0V, COMP = Open (Note 3)							
Input Bias Current	VEA+ = VREF, VEA- = 0V		-10	-30		-10	-30	μΑ
Shutdown Terminal Section								
Threshold Voltage		0.95	1.00	1.05	0.95	1.00	1.05	V
Input Voltage Range		0		5	0		5	V

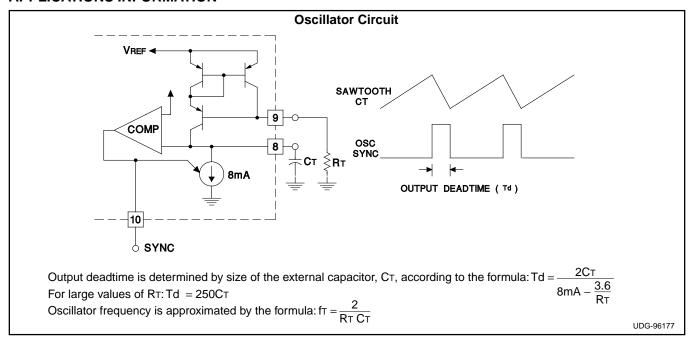
ELECTRICAL CHARACTERISTICS (cont.) Unless otherwise stated, these specifications apply for $TA = -55^{\circ}C$ to $+125^{\circ}C$ for UC1856; $-40^{\circ}C$ to $+85^{\circ}C$ for the UC2856; and $0^{\circ}C$ to $+70^{\circ}C$ for the UC3856, VIN = 15V, RT = 10k, CT = 1nF, TA = TJ.

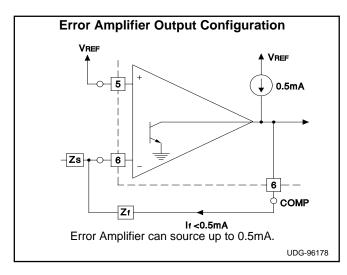
TEST CONDITIONS	UC1856/UC2856			UC3856			
	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
t.)			•				-
(Note 5)	3	1.5		3	1.5		mA
(Note 6)		1.5	0.8		1.5	0.8	mA
VSHUTDOWN = 0 to 1.3V		65	110		65	110	ns
							_
	40			40			V
VC = 40V			250			250	μА
IOUT = 20mA		0.1	0.5		0.1	0.5	V
IOUT = 200mA		0.5	2.6		0.5	2.6	V
IOUT = -20mA	12.5	13.2		12.5	13.2		V
IOUT = -200mA	12	13.1		12	13.1		V
C1 = 1nF		40	80		40	80	ns
C1 = 1nF		40	80		40	80	ns
VIN = 0V, IOUT = 20mA		0.8	1.5		0.8	1.5	V
	•	•					
	45	47	50	45	47	50	%
			0			0	%
		7.7	8.0		7.7	8.0	V
		0.7			0.7		V
		18	23		18	23	mA
	(Note 5) (Note 6) VSHUTDOWN = 0 to 1.3V VC = 40V IOUT = 20mA IOUT = 200mA IOUT = -20mA IOUT = -20mA C1 = 1nF C1 = 1nF	TEST CONDITIONS MIN t.) (Note 5) (Note 6) VSHUTDOWN = 0 to 1.3V 40 VC = 40V IOUT = 20mA IOUT = 200mA IOUT = -20mA IOUT = -200mA 12.5 IOUT = -200mA 12 C1 = 1nF C1 = 1nF VIN = 0V, IOUT = 20mA	TEST CONDITIONS (Note 5) (Note 6) (Note 6)	TEST CONDITIONS MIN TYP MAX	TEST CONDITIONS MIN TYP MAX MIN	TEST CONDITIONS MIN TYP MAX MIN TYP	TEST CONDITIONS MIN TYP MAX MIN TYP MAX

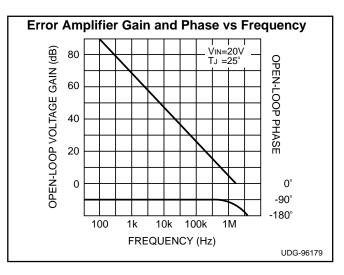
Note 1: All voltages are with respect to GND. Currents are positive into, negative out of the specified terminal.

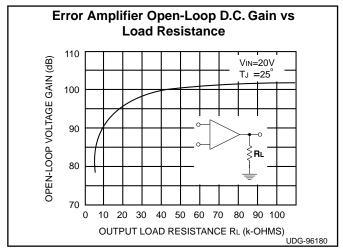
Note 2: This parameter, although guaranteed over the recommended operating conditions is not 100% tested in production.

Note 3: Parameter measured at trip point of latch with VEA+ = VREF, VEA- = 0V.

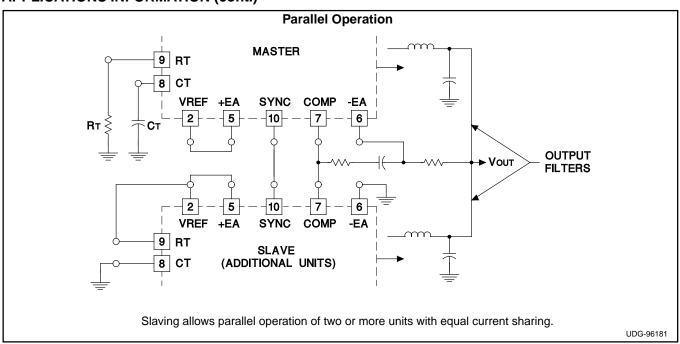

Note 4: Amplifier gain defined as:

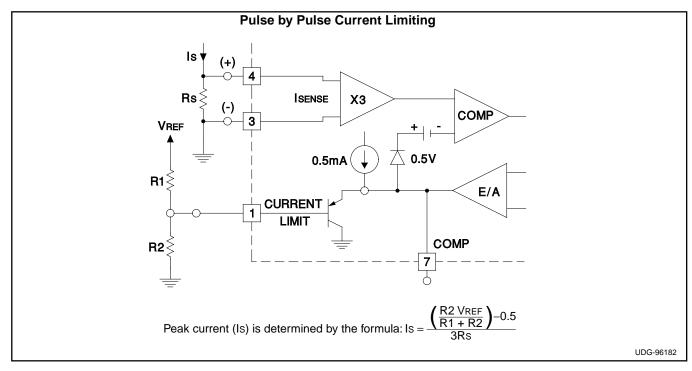

$$G = \frac{\Delta V COMP}{\Delta V CS+}; \qquad \Delta V CS- = 0V \text{ to } 1.0V$$

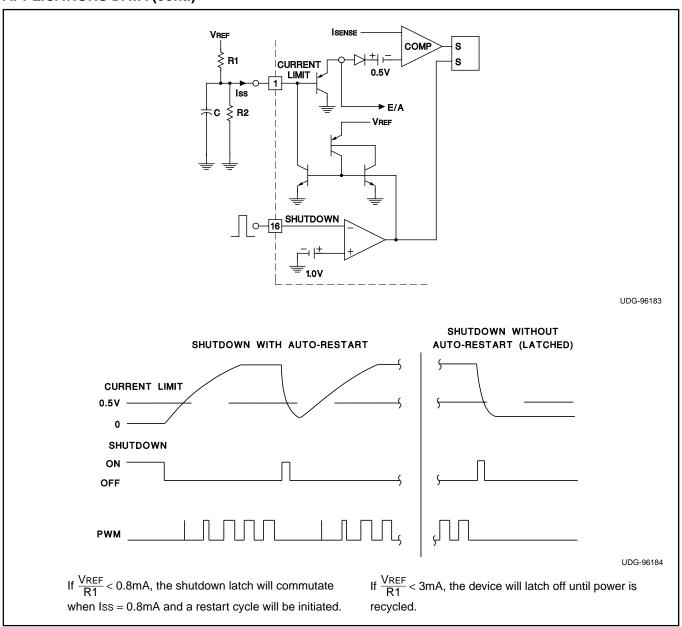

Note 5: Current into CL SS guaranteed to latch circuit into shutdown state.

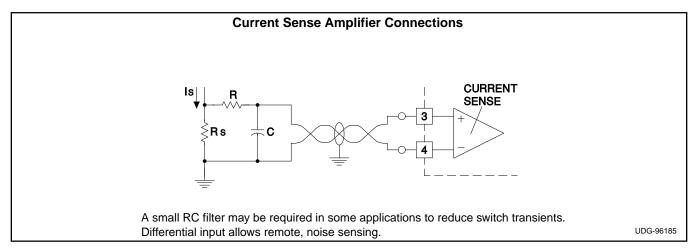

Note 6: Current into CL SS guaranteed not to latch circuit into shutdown state.

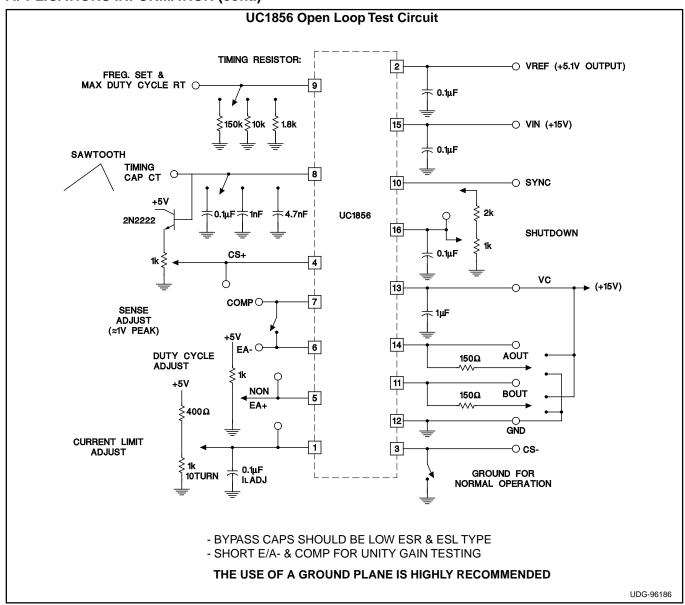
APPLICATIONS INFORMATION








APPLICATIONS INFORMATION (cont.)



APPLICATIONS DATA (cont.)

APPLICATIONS INFORMATION (cont.)

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated