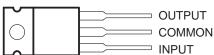
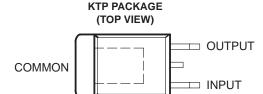
SLVS059D - JUNE 1976 - REVISED JULY 1999

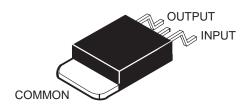

- 3-Terminal Regulators
- Output Current up to 500 mA
- No External Components
- Internal Thermal-Overload Protection
- High Power-Dissipation Capability
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Direct Replacements for Fairchild μA78M00 Series

description

This series of fixed-voltage integrated-circuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 500 mA of output current. The internal current-limiting and thermal-shutdown features of these regulators essentially make them immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also as the power-pass element in precision regulators.


The μ A78M00C series is characterized for operation over the virtual junction temperature range of 0°C to 125°C.

KC PACKAGE (TOP VIEW)

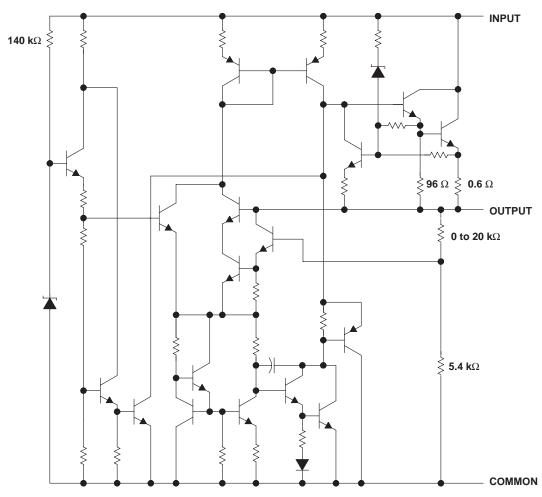


The COMMON terminal is in electrical contact with the mounting base.

TO-220AB OUTPUT COMMON INPUT

The COMMON terminal is in electrical contact with the mounting base.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



AVAILABLE OPTIONS

		PACKAG	ED DEVICES	CHIP
ТЈ	V _O (NOM) (V)	HEAT-SINK MOUNTED (KC)	PLASTIC FLANGE MOUNTED (KTP)	FORM (Y)
	5	μΑ78M05CKC	μΑ78M05CKTP	μΑ78M05Y
	6	μΑ78M06CKC	μΑ78M06CKTP	μΑ78M06Y
	8	μΑ78M08CKC	μΑ78M08CKTP	μΑ78M08Y
	9	μΑ78M09CKC	μΑ78M09CKTP	μΑ78M09Y
0°C to 125°C	10	μΑ78M10CKC	μΑ78M10CKTP	μΑ78M10Y
	12	μΑ78M12CKC	μΑ78M12CKTP	μΑ78M12Y
	15	μΑ78M15CKC	μΑ78M15CKTP	μΑ78M15Y
	20	μΑ78M20CKC	μΑ78M20CKTP	μΑ78M20Y
	24	μΑ78M24CKC	μΑ78M24CKTP	μΑ78M24Y

The KTP package is only available taped and reeled. Add the suffix R to the device type (e.g., μ A78M05CKTPR). Chip forms are tested at 25°C.

schematic

Resistor values shown are nominal.

SLVS059D - JUNE 1976 - REVISED JULY 1999

absolute maximum ratings over operating temperature range (unless otherwise noted)†

		μ Α78Μxx	UNIT
Innut voltage V	μΑ78Μ20, μΑ78Μ24	40	V
Input voltage, V _I	All others	35	V
Deckage thermal impedance () (see Notes 1 and 2)	KC package	22	°C
Package thermal impedance, $\theta_{\mbox{\scriptsize JA}}$ (see Notes 1 and 2)	KTP package	28	C
Virtual junction temperature range, TJ		0 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260	°C	
Storage temperature range, T _{Stg}		-65 to 150	°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_J(max) T_A)/θ_{JA}. Operating at the absolute maximum T_J of 150°C can impact reliability. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal-overload protection may be activated at power levels slightly above or below the rated dissipation.
 - 2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions

		MIN	MAX	UNIT
	μA78M05	7	25	
	μA78M06	8	25	
	μA78M08	10.5	25	
	μ A78M 09	11.5	26	
Input voltage, V _I	μA78M10	12.5	28	V
	μΑ78Μ12	14.5	30	
	μA78M15	17.5	30	
	μA78M20	23	35	
	μA78M24	27	38	
Output current, IO	-		500	mA
Operating virtual junction temperature, TJ			125	°C

SLVS059D - JUNE 1976 - REVISED JULY 1999

electrical characteristics at specified virtual junction temperature, V_I = 10 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

PARAMETER			μ Α	78M050)	UNIT	
PARAMETER	I E	ST CONDITIONS [†]	MIN	TYP	MAX	UNII	
O to to obtain	V _I = 7 V to 20 V		4.8	5	5.2	V	
Output voltage	V = 7 V to 20 V	T _J = 0°C to 125°C	4.75		5.25	v	
		V _I = 7 V to 25 V		3	100		
Input voltage regulation	I _O = 200 mA	V _I = 8 V to 20 V				mV	
		V _I = 8 V to 25 V		1	50		
Ripple rejection	V _I = 8 V to 18 V,	$I_O = 100 \text{ mA}, T_J = 0^{\circ}\text{C to } 125^{\circ}\text{C}$	62			dB	
	f = 120 Hz	I _O = 300 mA	62	80] ub	
Output valtage regulation	I _O = 5 mA to 500 mA			20	100	mV	
Output voltage regulation	I _O = 5 mA to 200 mA			10	50	IIIV	
Temperature coefficient of output voltage	I _O = 5 mA,	$T_J = 0$ °C to 125°C		-1		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz			40	200	μV	
Dropout voltage				2		V	
Bias current				4.5	6	mA	
Dies surrent shangs	I _O = 200 mA,	V _I = 8 V to 25 V, T _J = 0°C to 125°C			0.8	mA	
Bias current change	$I_{O} = 5 \text{ mA to } 350 \text{ mA}$ $T_{J} = 0^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$				0.5] ""^	
Short-circuit output current	V _I = 35 V			300		mA	
Peak output current				0.7		Α	

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

electrical characteristics at specified virtual junction temperature, V_I = 11 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

PARAMETER				μ Α78Μ06C			UNIT	
PARAMETER		TEST CONDITIONS†		MIN	TYP	MAX	UNII	
Output voltage	$I_{O} = 5 \text{ mA to } 350 \text{ mA},$	V _I = 8 V to 21 V		5.75	6	6.25	V	
Output voltage	10 = 3 111A to 330 111A,	V = 0 V 10 21 V	$T_J = 0$ °C to 125°C	5.7		6.3	V	
Input voltage regulation	I _O = 200 mA	$V_{I} = 8 \text{ V to } 25 \text{ V}$			5	100	mV	
input voltage regulation	10 = 200 IIIA	$V_{I} = 9 V \text{ to } 25 V$			1.5	50	1117	
Ripple rejection	V _I = 9 V to 19 V,	f = 120 Hz	I _O = 100 mA, T _J = 0°C to 125°C	59			dB	
			I _O = 300 mA	59	80			
Output voltage regulation	$I_O = 5 \text{ mA to } 500 \text{ mA}$				20	120	mV	
Output voltage regulation	$I_O = 5 \text{ mA to } 200 \text{ mA}$				10	60	IIIV	
Temperature coefficient of output voltage	$I_O = 5 \text{ mA},$	$T_J = 0$ °C to 125°C			-1		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz				45		μV	
Dropout voltage					2		V	
Bias current					4.5	6	mA	
Bias current change	$V_{I} = 9 V \text{ to } 25 V,$	$I_0 = 200 \text{ mA},$	$T_J = 0$ °C to 125°C			0.8	mA	
bias current change	$I_0 = 5 \text{ mA to } 350 \text{ mA},$	$T_J = 0$ °C to 125°C				0.5	IIIA	
Short-circuit output current	V _I = 35 V				270		mA	
Peak output current					0.7		Α	

[†] All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

electrical characteristics at specified virtual junction temperature, $V_I = 14 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

DADAMETER				μA	78M080)	UNIT	
PARAMETER		TEST CONDITIONS†		MIN	TYP	MAX	ONIT	
O to to disco.	V _I = 10.5 V to 23 V,	IO = 5 mA to 350 mA		7.7	8	8.3	V	
Output voltage	V = 10.5 V to 25 V,	10 = 2 HIY 10 220 HIY	$T_J = 0$ °C to 125°C	7.6		8.4	V	
Input voltage regulation	In - 200 mA	V _I = 10.5 V to 25 V			6 100	100	mV	
Input voltage regulation	I _O = 200 mA	V _I = 11 V to 25 V			2	50	IIIV	
Pinnle rejection	V _I = 11.5 V to 21.5 V,	I _O = 100 mA,	$T_J = 0$ °C to 125°C	56			dB	
Ripple rejection	f = 120 Hz	I _O = 300 mA		56	80		иь	
O. t t t t	I _O = 5 mA to 500 mA				25	160	mV	
Output voltage regulation	$I_O = 5 \text{ mA to } 200 \text{ mA}$				10	80	IIIV	
Temperature coefficient of output voltage	I _O = 5 mA,	T _J = 0°C to 125°C			-1		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz				52		μV	
Dropout voltage					2		V	
Bias current					4.6	6	mA	
Dies surrent change	V _I = 10.5 V to 25 V,	I _O = 200 mA,	T _J = 0°C to 125°C			0.8	А	
Bias current change	$I_O = 5 \text{ mA to } 350 \text{ mA},$	T _J = 0°C to 125°C				0.5	mA	
Short-circuit output current	V _I = 35 V	·			250		mA	
Peak output current					0.7		Α	

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

electrical characteristics at specified virtual junction temperature, $V_I = 16 \text{ V}, I_O = 350 \text{ mA}, T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER				μ Α78Μ09C			UNIT	
PARAMETER		TEST CONDITIONS†		MIN	TYP	MAX	UNII	
Outset welters	V _I = 11.5 V to 24 V,	I _O = 5 mA to 350 mA		8.6	9	9.4	V	
Output voltage	V = 11.5 V to 24 V,	1Q = 2 IIIA 10 220 IIIA	$T_J = 0$ °C to 125°C	8.5		9.5	V	
Input voltage regulation	I _O = 200 mA	V _I = 11.5 V to 26 V			6	100	mV	
iput voitage regulation	10 = 500 IIIA	V _I = 12 V to 26 V			2	50	IIIV	
Ripple rejection	V _I = 13 V to 23 V,	$I_O = 100 \text{ mA},$	$T_J = 0$ °C to 125°C	56			dB	
Ripple rejection	f = 120 Hz	I _O = 300 mA		56	80		иь	
Output voltage regulation	I _O = 5 mA to 500 mA				25	180	mV	
Output voltage regulation	I _O = 5 mA to 200 mA				10	90	IIIV	
Temperature coefficient of output voltage	$I_O = 5 \text{ mA},$	$T_J = 0$ °C to 125°C			-1		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz				58		μV	
Dropout voltage					2		V	
Bias current					4.6	6	mA	
Dies surrent change	V _I = 11.5 V to 26 V,	I _O = 200 mA,	T _J = 0°C to 125°C			0.8	A	
Bias current change	$I_O = 5 \text{ mA to } 350 \text{ mA},$	T _J = 0°C to 125°C				0.5	mA	
Short-circuit output current	V _I = 35 V				250		mA	
Peak output current		·			0.7		Α	

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

SLVS059D - JUNE 1976 - REVISED JULY 1999

electrical characteristics at specified virtual junction temperature, $V_I = 17 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER				μ Α78Μ10C			UNIT	
PARAMETER		TEST CONDITIONS†		MIN	TYP	MAX	UNIT	
Outrot with an	V _I = 12.5 V to 25 V,	I _O = 5 mA to 350 mA		9.6	10	10.4	V	
Output voltage	V = 12.5 V to 25 V,	IQ = 2 IIIY 10 220 IIIY	$T_J = 0$ °C to 125°C	9.5		10.5	V	
Input voltage regulation	lo - 200 mA	V _I = 12.5 V to 28 V			7	100	mV	
Input voltage regulation	I _O = 200 mA	V _I = 14 V to 28 V			2	50	1 mv	
Ripple rejection	V _I = 15 V to 25 V,	I _O = 100 mA,	$T_J = 0$ °C to 125°C	59			dB	
	f = 120 Hz	I _O = 300 mA		55	80		иь	
Output voltage regulation	I _O = 5 mA to 500 mA				25	200	mV	
Output voltage regulation	$I_O = 5 \text{ mA to } 200 \text{ mA}$) mA			10	100	IIIV	
Temperature coefficient of output voltage	I _O = 5 mA,	$T_J = 0$ °C to 125°C			-1		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz				64		μV	
Dropout voltage					2		V	
Bias current					4.7	6	mA	
Pine current change	V _I = 12.5 V to 28 V,	I _O = 200 mA,	$T_J = 0$ °C to 125°C			0.8	mA	
Bias current change	$I_O = 5 \text{ mA to } 350 \text{ mA},$	T _J = 0°C to 125°C				0.5	IIIA	
Short-circuit output current	V _I = 35 V				245		mA	
Peak output current		<u> </u>			0.7		Α	

[†] All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

electrical characteristics at specified virtual junction temperature, $V_I = 19 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER		TEST SOMBITIONS [‡]		μ Α78M12C			UNIT	
PARAMETER		TEST CONDITIONS†		MIN	TYP	MAX	UNIT	
Output voltage	V _I = 14.5 V to 27 V,	I _O = 5 mA to 350 mA		11.5	12	12.5	V	
Output voltage	V = 14.5 V to 27 V,	10 = 3 111A to 330 111A	$T_J = 0$ °C to 125°C	11.4		12.6	V	
Input voltage regulation	I _O = 200 mA	V _I = 14.5 V to 30 V			8	100	m∨	
Input voltage regulation	10 = 200 IIIA	V _I = 16 V to 30 V			2	50	1117	
Ripple rejection	V _I = 15 V to 25 V,	$I_0 = 100 \text{ mA},$	$T_J = 0$ °C to 125°C	55			dB	
	f = 120 Hz	$I_0 = 300 \text{ mA}$		55	80		uБ	
Outrot coltano accordation	$I_O = 5 \text{ mA to } 500 \text{ mA}$				25	240	mV	
Output voltage regulation	$I_O = 5 \text{ mA to } 200 \text{ mA}$				10	120	1117	
Temperature coefficient of output voltage	I _O = 5 mA				-1		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz				75		μV	
Dropout voltage					2		V	
Bias current					4.8	6	mA	
Dies surrent change	V _I = 14.5 V to 30 V,	I _O = 200 mA,	T _J = 0°C to 125°C			0.8	A	
Bias current change	$I_O = 5 \text{ mA to } 350 \text{ mA},$	T _J = 0°C to 125°C				0.5	mA	
Short-circuit output current	V _I = 35 V		·		240		mA	
Peak output current					0.7		Α	

[†] All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

electrical characteristics at specified virtual junction temperature, $V_I = 23 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

DADAMETED				μA	78M15	С	LINUT	
PARAMETER		TEST CONDITIONS†		MIN	TYP	MAX	UNIT	
O to to disco	V _I = 17.5 V to 30 V,	IO = 5 mA to 350 mA		14.4	15	15.6	V	
Output voltage	V = 17.5 V to 30 V,	IQ = 2 IIIY 10 220 IIIY	$T_J = 0$ °C to 125°C	14.25		15.75	V	
Input voltage regulation	I _O = 200 mA	V _I = 17.5 V to 30 V			10	100	mV	
input voitage regulation	10 = 200 IIIA	V _I = 20 V to 30 V			3	50	IIIV	
Pinnle rejection	V _I = 18.5 V to 28.5 V,	I _O = 100 mA,	$T_J = 0$ °C to 125°C	54			dB	
Ripple rejection	f = 120 Hz	I _O = 300 mA		54	70		uБ	
Output valtage regulation	$I_O = 5 \text{ mA to } 500 \text{ mA}$				25	300	mV	
Output voltage regulation	I _O = 5 mA to 200 mA				10	150	IIIV	
Temperature coefficient of output voltage	I _O = 5 mA,	$T_J = 0$ °C to 125°C			-1		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz				90		μV	
Dropout voltage					2		V	
Bias current					4.8	6	mA	
Pigg gurrant abanga	V _I = 17.5 V to 30 V,	I _O = 200 mA,	$T_J = 0$ °C to 125°C			0.8	m A	
Bias current change	$I_O = 5 \text{ mA to } 350 \text{ mA},$	T _J = 0°C to 125°C				0.5	mA	
Short-circuit output current	V _I = 35 V				240		mA	
Peak output current		<u> </u>			0.7		А	

[†] All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

electrical characteristics at specified virtual junction temperature, $V_I = 29 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER		TEST SOMBITIONS!		μ Α78M20C			UNIT	
PARAMETER		TEST CONDITIONS†		MIN	TYP	MAX	UNIT	
Output voltogo	V _I = 23 V to 35 V,	I _O = 5 mA to 350 mA		19.2	20	20.8	V	
Output voltage	V = 23 V to 33 V,	10 = 3 IIIA to 330 IIIA	$T_J = 0$ °C to 125°C	19		21	V	
Input voltage regulation	IO = 200 mA	V _I = 23 V to 35 V			10	100	mV	
input voitage regulation	10 = 200 IIIA	V _I = 24 V to 35 V			5	50	mv	
Ripple rejection	V _I = 24 V to 34 V,	$I_O = 100 \text{ mA},$	$T_J = 0$ °C to 125°C	53			dB	
	f = 120 Hz	$I_O = 300 \text{ mA}$		53	70		uБ	
Output valtage regulation	$I_O = 5 \text{ mA to } 500 \text{ mA}$				30	400	mV	
Output voltage regulation	$I_O = 5 \text{ mA to } 200 \text{ mA}$				10	200	IIIV	
Temperature coefficient of output voltage	I _O = 5 mA,	$T_J = 0$ °C to 125°C			-1.1		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz				110		μV	
Dropout voltage					2		V	
Bias current					4.9	6	mA	
Dies surrent change	V _I = 23 V to 35 V,	I _O = 200 mA,	$T_J = 0$ °C to 125°C			0.8	A	
Bias current change	$I_O = 5 \text{ mA to } 350 \text{ mA},$	T _J = 0°C to 125°C				0.5	mA	
Short-circuit output current	V _I = 35 V				240		mA	
Peak output current					0.7		А	

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

SLVS059D - JUNE 1976 - REVISED JULY 1999

electrical characteristics at specified virtual junction temperature, $V_I = 33 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

DADAMETED				μ Α78M24C			UNIT	
PARAMETER		TEST CONDITIONS†	_	MIN	TYP	MAX	UNII	
O to to disco.	V _I = 27 V to 38 V,	le - E mA to 350 mA		23	24	25	V	
Output voltage	V = 27 V 10 30 V,	$I_O = 5 \text{ mA to } 350 \text{ mA}$	$T_J = 0$ °C to 125°C	22.8		25.2	V	
Input voltage regulation	lo - 200 mA	V _I = 27 V to 38 V			10	100	mV	
Input voltage regulation	I _O = 200 mA	V _I = 28 V to 38 V			5	50	IIIV	
Pipple rejection	V _I = 28 V to 38 V,	I _O = 100 mA,	$T_J = 0$ °C to 125°C	50			dB	
Ripple rejection	f = 120 Hz	I _O = 300 mA		50	70		иь	
Output valtage regulation	$I_O = 5 \text{ mA to } 500 \text{ mA}$			30	480	mV		
Output voltage regulation	$I_O = 5 \text{ mA to } 200 \text{ mA}$				10	240	IIIV	
Temperature coefficient of output voltage	I _O = 5 mA,	T _J = 0°C to 125°C			-1.2		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz				170		μV	
Dropout voltage					2		V	
Bias current					5	6	mA	
Pine current change	V _I = 27 V to 38 V,	I _O = 200 mA,	$T_J = 0$ °C to 125°C			0.8	m A	
Bias current change	$I_O = 5 \text{ mA to } 350 \text{ mA},$	T _J = 0°C to 125°C				0.5	mA	
Short-circuit output current	V _I = 35 V				240		mA	
Peak output current					0.7		Α	

[†] All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

electrical characteristics at specified virtual junction temperature, $V_I = 10 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS†			μ Α	UNIT		
PARAMETER	TES	SI CONDITIONS		MIN	TYP	MAX	UNIT
Output voltage					5		V
Input voltage regulation	I _O = 200 mA	V _I = 7 V to 25 V			3		mV
Input voltage regulation	10 = 200 IIIA	V _I = 8 V to 25 V			1		IIIV
Ripple rejection	$V_I = 8 V \text{ to } 18 V,$	I _O = 300 mA,	f = 120 Hz		80		dB
Output voltage regulation	I _O = 5 mA to 500 mA			20			mV
Output voltage regulation	I _O = 5 mA to 200 mA				10		IIIV
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$				-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz				40		μV
Dropout voltage					2		V
Bias current					4.5		mA
Short-circuit output current	V _I = 35 V		·		300		mA
Peak output current					0.7		А

[†] All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

electrical characteristics at specified virtual junction temperature, V_I = 11 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

PARAMETER				μ Δ	UNIT		
PARAMETER	l if	ST CONDITIONS†		MIN	TYP	MAX	UNII
Output voltage					6		V
t t	I _O = 200 mA	V _I = 8 V to 25 V			5		mV
Input voltage regulation	10 = 200 IIIA	V _I = 9 V to 25 V			1.5		IIIV
Ripple rejection	V _I = 9 V to 19 V,	I _O = 300 mA,	f = 120 Hz		80		dB
Output valtage regulation	$I_O = 5 \text{ mA to } 500 \text{ mA}$			20	20		\/
Output voltage regulation	I _O = 5 mA to 200 mA				mV		
Temperature coefficient of output voltage	I _O = 5 mA				-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz				45		μV
Dropout voltage					2		V
Bias current					4.5		mA
Short-circuit output current	V _I = 35 V				270		mA
Peak output current					0.7		Α

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

electrical characteristics at specified virtual junction temperature, $V_I = 14 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONST			μ Α	UNIT			
PARAMETER	I E	SI CONDITIONS!		MIN	TYP	MAX	OIVII	
Output voltage					8		V	
Input voltage regulation	I _O = 200 mA	V _I = 10.5 V to 25 V	'		6		mV	
input voltage regulation	10 = 200 IIIA	$V_{ } = 11 \text{ V to } 25 \text{ V}$			2		IIIV	
Ripple rejection	$V_I = 11.5 \text{ V to } 21.5 \text{ V},$	I _O = 300 mA,	f = 120 Hz		80		dB	
Output valtage regulation	I _O = 5 mA to 500 mA			25			mV	
Output voltage regulation	$I_O = 5 \text{ mA to } 200 \text{ mA}$) = 5 mA to 200 mA			10			
Temperature coefficient of output voltage	I _O = 5 mA				-1		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz				52		μV	
Dropout voltage					2		V	
Bias current					4.6		mA	
Short-circuit output current	V _I = 35 V				250		mA	
Peak output current					0.7		Α	

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

SLVS059D - JUNE 1976 - REVISED JULY 1999

electrical characteristics at specified virtual junction temperature, $V_I = 16 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS†			μ Α	UNIT		
PARAMETER	I E	SI CONDITIONS		MIN	MIN TYP MAX		UNIT
Output voltage					9		V
Input voltage regulation	V _I = 11.5 V to 26 V			6		mV	
Input voltage regulation	I _O = 200 mA	V _I = 12 V to 26 V			2		IIIV
Ripple rejection	$V_I = 13 \text{ V to } 23 \text{ V},$	I _O = 300 mA,	f = 120 Hz		80		dB
Output voltage regulation	I _O = 5 mA to 500 mA		25			mV	
Output voltage regulation	I _O = 5 mA to 200 mA				10		IIIV
Temperature coefficient of output voltage	I _O = 5 mA,	T _J = 0°C to 125°C			-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz				58		μV
Dropout voltage					2		V
Bias current					4.6		mA
Short-circuit output current	V _I = 35 V	·			250		mA
Peak output current					0.7		Α

[†] All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

electrical characteristics at specified virtual junction temperature, $V_I = 17 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

DADAMETED	TEST CONDITIONST			μ Α	UNIT		
PARAMETER	I E	SI CONDITIONS!		MIN TYP MAX		UNII	
Output voltage					10		V
Input voltage regulation	I _O = 200 mA	V _I = 12.5 V to 28 V	V	7 2			mV
input voitage regulation	10 = 200 IIIA	$V_{I} = 14 \text{ V to } 28 \text{ V}$					IIIV
Ripple rejection	$V_I = 15 \text{ V to } 25 \text{ V},$	I _O = 300 mA,	f = 120 Hz		80		dB
Output voltage regulation	I _O = 5 mA to 500 mA		25			mV	
Output voltage regulation	$I_O = 5 \text{ mA to } 200 \text{ mA}$				10		IIIV
Temperature coefficient of output voltage	I _O = 5 mA				-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz				64		μV
Dropout voltage					2		V
Bias current					4.7		mA
Short-circuit output current	V _I = 35 V				245		mA
Peak output current					0.7		Α

[†] All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

electrical characteristics at specified virtual junction temperature, V_I = 19 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

PARAMETER				μ Δ	UNIT		
PARAMETER	l if	ST CONDITIONS†		MIN	TYP	MAX	UNII
Output voltage					12		V
Innut valtage regulation	I _O = 200 mA	$V_I = 14.5 \text{ V to } 30^{\circ}$	V		8		m\/
Input voltage regulation	10 = 200 IIIA	V _I = 16 V to 30 V		2		m∨	
Ripple rejection	V _I = 15 V to 25 V,	I _O = 300 mA,	f = 120 Hz		80		dB
Output valtage regulation	I _O = 5 mA to 500 mA				25		\/
Output voltage regulation	I _O = 5 mA to 200 mA			25		mV	
Temperature coefficient of output voltage	I _O = 5 mA				-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz				75		μV
Dropout voltage					2		V
Bias current					4.8		mA
Short-circuit output current	V _I = 35 V				240		mA
Peak output current					0.7		А

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

electrical characteristics at specified virtual junction temperature, $V_I = 23 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONST			μ Α	UNIT			
PARAMETER	IES	CONDITIONS	Ī	MIN	TYP	MAX	OIVII	
Output voltage					15		V	
Input voltage regulation I _O = 200 mA	le - 200 mA	V _I = 17.5 V to 30 V			10		mV	
	IO = 200 IIIA	V _I = 20 V to 30 V			3		IIIV	
Ripple rejection	$V_I = 18.5 \text{ V to } 28.5 \text{ V},$	I _O = 300 mA, f =	120 Hz		70		dB	
Output voltage regulation	I _O = 5 mA to 500 mA		25			mV		
Output voltage regulation	I _O = 5 mA to 200 mA			10] '''	
Temperature coefficient of output voltage	I _O = 5 mA				-1		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz				90		μV	
Dropout voltage					2		V	
Bias current					4.8		mA	
Short-circuit output current	V _I = 35 V				240		mA	
Peak output current					0.7		Α	

[†] All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

SLVS059D - JUNE 1976 - REVISED JULY 1999

electrical characteristics at specified virtual junction temperature, V_I = 29 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

PARAMETER	TEST CONDITIONS†			μΑ	UNIT		
PARAMETER	'-	STCONDITIONS		MIN	TYP	MAX	UNII
Output voltage					20		V
t t	lo - 200 mA	V _I = 23 V to 35 V		10			m\/
Input voltage regulation	I _O = 200 mA	V _I = 24 V to 35 V		5		mV	
Ripple rejection	V _I = 24 V to 34 V,	f = 120 Hz,	I _O = 300 mA		70		dB
Output voltage regulation	I _O = 5 mA to 500 mA			30		m\/	
Output voltage regulation	I _O = 5 mA to 200 mA			30 10	mV		
Temperature coefficient of output voltage	I _O = 5 mA				-1.1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz				110		μV
Dropout voltage					2		V
Bias current					4.9		mA
Short-circuit output current	V _I = 35 V	·	_		240		mA
Peak output current		·			0.7		Α

[†] All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

electrical characteristics at specified virtual junction temperature, V_I = 33 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

PARAMETER	TEST CONDITIONST			μ Α	UNIT			
PARAMETER	I E	SI CONDITIONS!		MIN	TYP	MAX	ONT	
Output voltage					24		V	
Input voltage regulation	I _O = 200 mA	V _I = 27 V to 38 V		10		mV		
Input voltage regulation	10 = 200 IIIA	= 200 mA V _I = 28 V to 38 V	5			IIIV		
Ripple rejection	$V_I = 28 \text{ V to } 38 \text{ V},$	I _O = 300 mA,	f = 120 Hz		70		dB	
Output valtage regulation	$I_O = 5 \text{ mA to } 500 \text{ mA}$			30		mV		
Output voltage regulation	$I_O = 5$ mA to 200 mA				10		1110	
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$				-1.2		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz				170		μV	
Dropout voltage					2		V	
Bias current					5		mA	
Short-circuit output current	V _I = 35 V				240		mA	
Peak output current					0.7		Α	

[†] All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated