UC1543 UC1544 UC2543 UC2544 UC3543 UC3544 # Power Supply Supervisory Circuit ## **FEATURES** - Includes Over-voltage, Under-voltage, And Current Sensing Circuits - Internal 1% Accurate Reference - Programmable Time Delays - SCR "Crowbar" Drive Of 300mA - Remote Activation Capability - Optional Over-voltage Latch - Uncommitted Comparator Inputs For Low Voltage Sensing (UC1544 Series Only) ## **DESCRIPTION** The monolithic integrated circuits contain all the functions necessary to monitor and control the output of a sophisticated power supply system. Over-voltage (O.V.) sensing with provision to trigger an external SCR "crowbar" shutdown; an under-voltage (U.V.) circuit which can be used to monitor either the output or to sample the input line voltage; and a third op amp/comparator usable for current sensing (C.L.) are all included in this IC, together with an independent, accurate reference generator. Both over- and under-voltage sensing circuits can be externally programmed for minimum time duration of fault before triggering. All functions contain open collector outputs which can be used independently or wire-or'ed together, and although the SCR trigger is directly connected only to the over-voltage sensing circuit, it may be optionally activated by any of the other outputs, or from an external signal. The O.V. circuit also includes an optional latch and external reset capability. The UC1544/2544/3544 devices have the added versatility of completely uncommitted inputs to the voltage sensing comparators so that levels less than 2.5V may be monitored by dividing down the internal reference voltage. The current sense circuit may be used with external compensation as a linear amplifier or as a highgain comparator. Although nominally set for zero input offset, a fixed threshold may be added with an external resistor. Instead of current limiting, this circuit may also be used as an additional voltage monitor. The reference generator circuit is internally trimmed to eliminate the need for external potentiometers and the entire circuit may be powered directly from either the output being monitored or from a separate bias voltage. #### **BLOCK DIAGRAM** ## **ABSOLUTE MAXIMUM RATINGS** | Input Supply Voltage, VIN | |--| | Sense Inputs, Voltage Range 0 to VIN | | SCR Trigger Current (Note 1)600mA | | Indicator Output Voltage | | Indicator Output Sink Current | | Power Dissipation (Package Limitation)1000mW | | Operating Temperature Range | | UC1543, UC1544 | | UC2543, UC2544 | | UC3543, UC3544 | | Storage Temperature Range65°C to +150°C | | Note 1: At higher input voltages, a dissipation limiting resistor, RG, is required | Note 1: At higher input voltages, a dissipation limiting resistor, RG, is required. Note 2: Currents are positive-into, negative-out of the specified terminal. Consult Packaging section of Databook for thermal limitations and considerations of package. ## **CONNECTION DIAGRAMS** | PLCC-20, LCC-20 | PACKAGE PIN FUNCTION | | | | | |----------------------|----------------------|-----|--|--|--| | (TOP VIEW) | FUNCTION | PIN | | | | | Q or L Package | N/C | 1 | | | | | _ | SCR Trigger | 2 | | | | | | Remote Activate | 3 | | | | | 3 2 1 20 19 | Reset | 4 | | | | | | O.V. Indicate | 5 | | | | | <u>/ 3 2 1 20 19</u> | N/C | 6 | | | | | 14 18 | O.V. Delay | 7 | | | | | 5 17 | O.V. Input | 8 | | | | | 1 | N/C | 9 | | | | | [6 16] | N/C | 10 | | | | | [7 15] | U.V. Input | 11 | | | | | [8] 14 | U.V. Delay | 12 | | | | | 9 10 11 12 13 | U.V. Indicate | 13 | | | | | | C.L. INV. Input | 14 | | | | | | C.L. N.I. Input | 15 | | | | | | Offset/Comp | 16 | | | | | | C.L. Output | 17 | | | | | | Ground | 18 | | | | | | VREF | 19 | | | | | | Vin | 20 | | | | | DIL-18, SOIC-18 (TOP VIEW)
J or N, DW Package | | | UC 1544
UC 2544 | |--|-----------|----|--------------------| | , = | ,- | _ | | | | \exists | | UC 3544 | | SCR Trigger | 1 | 18 | Vin | | Remote
Activate | 2 | 17 | VREF | | Reset | 3 | 16 | Ground | | O.V. Indicate | 4 | 15 | C.L. Output | | O.V. Delay | 5 | 14 | Offset/Comp | | O.V. N.I. Input | 6 | 13 | C.L. N.I. Input | | O.V. Inv. Input | 7 | 12 | C.L. Inv. Input | | U.V. N.I. Input | 8 | 11 | U.V. Indicate | | U.V. Inv. Input | 9 | 10 | U.V. Delay | | | | | | | | 3 | 2 | 1 | 20 | 19 | | |-----|---|----|----|----|----|----| | 4 | | | V | | | 18 | | 5 | | | | | | 17 | | 6 | | | | | | 16 | | ₫ 7 | | | | | | 15 | | 8 | 9 | 10 | 11 | 12 | 13 | 14 | PLCC-20, LCC-20 (TOP VIEW) Q or L Package | PACKAGE PIN FUNCTION | | | | | |----------------------|-----|--|--|--| | FUNCTION | PIN | | | | | N/C | 1 | | | | | SCR Trigger | 2 | | | | | Remote Activate | 3 | | | | | Reset | 4 | | | | | O.V. Indicate | 5 | | | | | N/C | 6 | | | | | O.V. Delay | 7 | | | | | O.V. N.I. Input | 8 | | | | | O.V. INV. Input | 9 | | | | | U.V. N.I. Input | 10 | | | | | U.V. INV. Input | 11 | | | | | U.V. Delay | 12 | | | | | U.V. Indicate | 13 | | | | | C.L. INV. Input | 14 | | | | | C.L. N.I. Input | 15 | | | | | Offset/Comp | 16 | | | | | C.L. Output | 17 | | | | | Ground | 18 | | | | | VREF | 19 | | | | | Vin | 20 | | | | **ELECTRICAL CHARACTERISTICS:** Unless otherwise stated, these specifications apply for $T_A = -55^{\circ}C$ to +125°C for the UC1543 and UC1544; -25°C to +85°C for the UC2543 and UC2544; and 0°C to +70°C for the UC3543 and UC3544. Electrical tests are performed with $V_{IN} = 10V$ and $2k\Omega$ pull-up resistors on all indicator outputs. All electrical specifications for the UC1544, UC2544, and UC3544 devices are tested with the inverting over-voltage input and the non-inverting under-voltage input externally connected to the 2.5V reference. $T_A = T_J$. | PARAMETER | TEST CONDITIONS | UC1543/UC1544
UC2543/UC2544 | | | UC3543/UC3544 | | | UNITS | |---|---|--------------------------------|------|--------|---------------|------|--------|--------| | | | | TYP | MAX | MIN | TYP | MAX | | | Input Voltage Range | TJ = 25°C to TMAX | 4.5 | | 40 | 4.5 | | 40 | V | | | TMIN to TMAX | 4.7 | | 40 | 4.7 | | 40 | V | | Supply Current | VIN = 40V, Output Open, TJ = 25°C | | 7 | 10 | | 7 | 10 | mA | | | $TMIN \le TJ \le TMAX$ | | | 15 | | | 15 | mA | | Reference Section | | | | | | | | | | Output Voltage | TJ = 25°C | 2.48 | 2.50 | 2.52 | 2.45 | 2.50 | 2.55 | V | | Output Voltage | Over Temperature Range | 2.45 | | 2.55 | 2.40 | | 2.60 | V | | Line Regulation | Vin = 5 to 30V | | 1 | 5 | | 1 | 5 | mV | | Load Regulation | IREF = 0 to 10mA | | 1 | 10 | | 1 | 10 | mV | | Short Circuit Current | VREF = 0 | -10 | -20 | -40 | -12 | -20 | -40 | mA | | Temperature Stability | | | 50 | | | 50 | | ppm/°0 | | SCR Trigger Section | | | | | | | | _ | | Peak Output Current | VIN = 5V, RG = 0, VO = 0 | -100 | -300 | -600 | -100 | -300 | -600 | mA | | Peak Output Voltage | VIN = 15V, IO = -100mA | 12 | 13 | | 12 | 13 | | V | | Output Off Voltage | VIN = 40V | | 0 | 0.1 | | 0 | 0.1 | V | | Remote Activate Current | R/A Pin = Gnd | | -0.4 | -0.8 | | -0.4 | -0.8 | mA | | Remote Activate Voltage | R/A Pin Open | | 2 | 6 | | 2 | 6 | V | | Reset Current | Reset = Gnd, R/A = Gnd | | -0.4 | -0.8 | | -0.4 | -0.8 | mA | | Reset Voltage | Reset open, R/A = Gnd | | 2 | 6 | | 2 | 6 | V | | Output Current Rise Time | $RL = 50\Omega$, $TJ = 25^{\circ}C$, $CD = 0$ | | 400 | | | 400 | | mA/μs | | Prop. Delay from R/A | $RL = 50\Omega$, $TJ = 25^{\circ}C$, $CD = 0$ | | 300 | | | 300 | | ns | | Prop. Delay from O/V input | $RL = 50\Omega$, $TJ = 25^{\circ}C$, $CD = 0$ | | 500 | | | 500 | | ns | | Comparator Section | | | | | | | | | | Input Threshold (Input | T _J = 25°C | 2.45 | 2.50 | 2.55 | 2.40 | 2.50 | 2.60 | V | | voltage rising on O.V. and falling on U.V.) | Over Temperature Range | 2.40 | | 2.60 | 2.35 | | 2.65 | V | | Input Hysteresis | | | 25 | | | 25 | | mV | | Input Bias Current | Sense Input = 0V | | -0.3 | -1.0 | | -0.3 | -1.0 | μΑ | | Delay Saturation | | | 0.2 | 0.5 | | 0.2 | 0.5 | V | | Delay High Level | | | 6 | 7 | | 6 | 7 | V | | Delay Charging Current | Vo = 0 | -200 | -250 | -300 | -200 | -250 | -300 | μΑ | | Indicate Saturation | IL = 10mA | | 0.2 | 0.5 | | 0.2 | 0.5 | V | | Indicate Leakage | VIND = 40V | | .01 | 1.0 | | .01 | 1.0 | μΑ | | Propagation Delay | Input Over Drive = 200mV, T _J = 25°C, C _D = 0 | | 400 | | | 400 | | ns | | | Input Over Drive = 200mV, $T_J = 25$ °C, $C_D = 1\mu F$ | | 10 | | | 10 | | ms | | Current Limit Section | | | | | | | | | | Input Voltage Range | | 0 | | VIN-3V | 0 | | VIN-3V | V | | Input Bias Current | Offset Pin Open, VcM = 0 | | -0.3 | -1.0 | | -0.3 | -1.0 | μΑ | | Input Offset Voltage | Offset Pin Open, VcM = 0 | | 0 | 10 | | 0 | 10 | m۷ | | | 10kΩ from Offset Pin to Gnd | 80 | 100 | 120 | 80 | 100 | 120 | mV | | CMRR | 0 ≤ Vcm ≤ 12V, Vin = 15V | 60 | 70 | | 60 | 70 | | dB | | AVOL | Offset Pin Open, $V_{CM} = 0V$, $RL = 10k$ to $15k\Omega$, $\Delta V_{OUT} = 1$ to $6V$ | 72 | 80 | | 72 | 80 | | dB | | Output Saturation | IL = 10mA | | 0.2 | 0.5 | | 0.2 | 0.5 | V | | Output Leakage | VIND = 40V | | .01 | 1.0 | | .01 | 1.0 | μΑ | | Small Signal Bandwidth | Av = 0dB, T _J = 25°C | | 5 | | | 5 | | MHz | | Propagation Delay | Voverdrive = 100mV, TJ = 25°C | | 200 | | | 200 | | ns | UC1543 UC1544 UC2543 UC2544 UC3543 UC3544 # APPLICATIONS (Pin numbers given for UC1543 series devices) The values for the external components are determined as follows: Current limit input threshold, $VTH = \frac{1000}{R_1}$ cs is determined by the current loop dynamics Peak current to load, $$IP \cong \frac{VTH}{RSC} + \frac{VO}{RSC} \left(\frac{R2}{R2 + R3}\right)$$ Short Circuit Current, Isc = $\frac{VTH}{RSC}$ Low output voltage limit, Vo (Low) = $\frac{2.5 (R4 + R5 + R6)}{R5 + R6}$ High output voltage limit, Vo (High) = $\frac{2.5 (R_4 + R_5 + R_6)}{R_6}$ Voltage sensing delay, t_D = 10,000Cd SCR trigger power limiting resistor, RG > $\frac{VIN - 5}{0.2}$ ## Input Line Monitor #### **Overcurrent Shutdown** ## **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 1999, Texas Instruments Incorporated