- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Low-Power Advanced CMOS Technology
- Load and Unload Clocks Can Be Asynchronous or Coincident
- 1024 Words $\times 18$ Bits
- Programmable Almost-Full/Almost-Empty Flag
- Empty, Full, and Half-Full Flags
- Fast Access Times of 30 ns With a $50-\mathrm{pF}$ Load
- Fall-Through Time Is 20 ns Typical
- Data Rates up to 40 MHz
- High-Output Drive for Direct Bus Interface
- 3-State Outputs
- Package Options Include 68-Pin (FN) and 80-Pin Thin Quad Flat (PN) Packages

NC - No internal connection

NC - No internal connection

description

A FIFO memory is a storage device that allows data to be written into and read from its array at independent data rates. The SN74ACT7802 is a 1024-word by 18-bit FIFO for high-speed applications. It processes data in a bit-parallel format at rates up to 40 MHz and access times of 30 ns .

Data is written into the FIFO memory on a low-to-high transition on the load-clock (LDCK) input and is read out on a low-to-high transition on the unload-clock (UNCK) input. The memory is full when the number of words clocked in exceeds by 1024 the number of words clocked out. When the memory is full, LDCK has no effect on the data in the memory; when the memory is empty, UNCK has no effect.
A low level on the reset ($\overline{\mathrm{RESET}}$) input resets the FIFO internal clock stack pointers and sets full ($\overline{\mathrm{FULL}})$ high, almost full/almost empty (AF/AE) high, half full (HF) low, and empty (EMPTY) low. The Q outputs are not reset to any specific logic level. The FIFO must be reset upon power up. The Q outputs are noninverting and are in the high-impedance state when the output-enable (OE) input is low.

When writing to the FIFO after a reset pulse or when the FIFO is empty, the first active transition on LDCK drives EMPTY high and causes the first word written to the FIFO to appear on the Q outputs. An active transition on UNCK is not required to read the first word written to the FIFO. Each subsequent read from the FIFO requires an active transition on UNCK.

The SN74ACT7802 can be cascaded in the word-width direction but not in the word-depth direction.
The SN74ACT7802 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the FN package.
functional block diagram

Terminal Functions

TERMINAL			DESCRIPTION
NAME	NO. \dagger		
AF/AE	33	0	Almost-full/almost-empty flag. Depth-offset values can be programmed for AF/AE, or the default value of 256 can be used for the almost-empty almost-full offset (X). AF/AE is high when memory contains X or fewer words or $(1024-X)$ or more words. AF/AE is high after reset.
$\overline{\text { DAF }}$	27	1	Define almost-full flag. The high-to-low transition of $\overline{\mathrm{DAF}}$ stores the binary value of data inputs as the AF/AE offset value (X). With DAF held low, a low pulse on RESET defines AF/AE using X.
D0-D17	$\begin{gathered} \hline 7-15,17, \\ 19-26 \end{gathered}$	1	18-bit data input port
EMPTY	66	0	Empty flag. $\overline{\text { EMPTY }}$ is low when the FIFO is empty. A FIFO reset also causes $\overline{\text { EMPTY }}$ to go low.
$\overline{\text { FULL }}$	35	0	Full flag. $\overline{\text { FULL }}$ is low when the FIFO is full. A FIFO reset causes $\overline{\text { FULL }}$ to go high.
HF	36	0	Half-full flag. HF is high when the FIFO memory contains 512 or more words. HF is low after reset.
LDCK	29	1	Load clock. Data is written to the FIFO on the rising edge of LDCK when FULL is high.
OE	2	1	Output enable. When OE is low, the data outputs are in the high-impedance state.
Q0-Q17	$\begin{gathered} 38-39,41-42, \\ 44,46-47, \\ 49-50,52-53, \\ 55-56,58-59, \\ 61,63-64 \end{gathered}$	O	18-bit data-output port
RESET	1	1	Reset. A low level on $\overline{\text { RESET }}$ resets the FIFO and drives AF/AE and $\overline{\text { FULL }}$ high and HF and EMPTY low.
UNCK	5	1	Unload clock. Data is read from the FIFO on the rising edge of UNCK when EMPTY is high.

\dagger Terminal numbers listed are for the FN package.

offset value values for AF/AE

The FIFO memory status is monitored by the $\overline{\text { FULL, }}$, EMPTY, HF, and AF/AE flags. The $\overline{\text { FULL output is low when }}$ the memory is full; the EMPTY output is low when the memory is empty. The HF output is high when the memory contains 512 or more words and low when it contains fewer than 512 words. The level of the AF/AE flag is determined by both the number of words in the FIFO and a user-definable offset X. AF/AE is high when the FIFO is almost full or almost empty, i.e., when it contains X or fewer words or ($1024-\mathrm{X}$) or more words. The AF/AE offset value is either user-defined or the default value of 256 ; it is programmed during each reset cycle as follows:

user-defined X :

Take $\overline{\mathrm{DAF}}$ from high to low.
If $\overline{\mathrm{RESET}}$ is not already low, take $\overline{\mathrm{RESET}}$ low.
With $\overline{\mathrm{DAF}}$ held low, take $\overline{\mathrm{RESET}}$ high. This defines the AF/AE flag using X.
default X :
To redefine the AF/AE flag using the default value of $X=256$, hold $\overline{\mathrm{DAF}}$ high during the reset cycle.

INSTRUMENTS

Figure 1. Write, Read, and Flag Timing Reference

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC}	-0.5 V to 7 V
Input voltage range, V_{1}	-0.5 V to 7 V
Voltage range applied to a disabled 3-state output	-0.5 V to 5.5 V
Package thermal impedance, θ_{JA} (see Note 1): FN package PN package	$\begin{aligned} & 39^{\circ} \mathrm{C} / \mathrm{W} \\ & 62^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.
recommended operating conditions

		'ACT7802-25		'ACT7802-40		'ACT7802-60		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		0.8		0.8		0.8	V
${ }^{\mathrm{I}} \mathrm{OH}$	High-level output current		-8		-8		-8	mA
IOL	Low-level output current		16		16		16	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	0	70	0	70	0	70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			MIN	TYPキ	MAX	UNIT
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-8 \mathrm{~mA}$		2.4			V
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I} \mathrm{OL}=16 \mathrm{~mA}$				0.5	V
I	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or 0				± 5	$\mu \mathrm{A}$
IOZ	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or 0				± 5	$\mu \mathrm{A}$
ICC§	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$ or 0					400	$\mu \mathrm{A}$
$\Delta \mathrm{lcc}{ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	One input at 3.4 V,	Other inputs at V_{CC} or GND			1	mA
C_{i}	$\mathrm{V}_{\mathrm{I}}=0$,	$\mathrm{f}=1 \mathrm{MHz}$			4		pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=0$,	$\mathrm{f}=1 \mathrm{MHz}$			8		pF

[^0]
1024×18 STROBED FIRST－IN，FIRST－OUT MEMORY

SCAS187D－AUGUST 1990 －REVISED APRIL 1998
timing requirements over recommended operating conditions（see Figures 1 and 2）

switching characteristics over recommended ranges of supply voltage and operating free－air temperature， $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$（see Figures 1 and 2）

PARAMETER	FROM （INPUT）	TO （OUTPUT）	＇ACT7802－25			＇ACT7802－40		＇ACT7802－60		UNIT
			MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	LDCK or UNCK		40			25		16.7		MHz
${ }^{\text {tpd }}$	LDCK \uparrow	Any Q	8	20	30	8	35	8	45	ns
	UNCK \uparrow		12		30	12	35	12	45	
tpd^{\ddagger}	UNCK个	Any Q	21							ns
tPLH	LDCK \uparrow	EMPTY	4		18	4	20	4	22	ns
tPHL	UNCK个	EMPTY	2		18	2	20	2	22	ns
	$\overline{\text { RESET }} \downarrow$		2		18	2	20	2	22	
	LDCK \uparrow	$\overline{\text { FULL }}$	4		18	4	20	4	22	
tPLH	UNCK介	$\overline{\text { FULL }}$	4		17	4	19	4	21	ns
	$\overline{\text { RESET }} \downarrow$		2		17	2	19	2	21	
$t_{\text {tpd }}$	LDCK \uparrow	AF／AE	2		20	2	22	2	24	ns
	UNCK \uparrow		2		20	2	22	2	24	
tPLH	$\overline{\text { RESET }} \downarrow$	AF／AE	2		17	2	19	2	21	ns
	LDCK \uparrow	HF	2		18	2	20	2	22	
tPHL	UNCK个	HF	2		18	2	20	2	22	ns
	$\overline{\text { RESET } ~} \downarrow$		2		17	2	19	2	21	
ten	OE	Any Q	2		12	2	14	2	16	ns
$\mathrm{t}_{\text {dis }}$	OE	Any Q	2		14	2	16	2	18	ns

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．
\ddagger This parameter is measured with $C_{L}=30 \mathrm{pF}$（see Figure 3）．
operating characteristics， $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C_{pd}	Power dissipation capacitance per channel	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{f}=5 \mathrm{MHz}$	65	pF

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

PARAMETER		S1
ten	tPZH	Open
	tPZL	Closed
${ }^{\text {d }}$ dis	tPHZ	Open
	tPLZ	Closed
${ }^{\text {tpd }}$	tPLH	Open
	tPHL	Open

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

NOTE A: C_{L} includes probe and jig capacitance.
Figure 2. Load Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

Figure 3

POWER DISSIPATION CAPACITANCE
VS
SUPPLY VOLTAGE

Figure 4

APPLICATION INFORMATION

Figure 5. Word-Width Expansion: 1024×36 Bit

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent Tl deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

[^0]: \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 § ICC tested with outputs open

