

FEATURES

- Precision Current Control
- ±800mA Load Current
- 1.25V Total VSAT at 800mA
- Controlled Velocity Head Parking
- Precision Dual Supply Monitor with Indicator
- Limit Input to Force Output Extremes
- Inhibit Input and UVLO
- 4V to 15V operation

DESCRIPTION

This full-bridge power amplifier is rated for continuous output current of 0.8 Amperes and is intended for use in demanding servo applications such as head positioning for high-density disk drives. The device includes a precision current sense amplifier that provides accurate control of load current. Current is sensed with a single resistor in series with the load. The power amplifier has a very low output saturation voltage and will operate down to 4V supply levels. Power output stage protection includes current limiting and thermal shutdown.

Auxiliary functions on this device include a dual-input under-voltage comparator, which can monitor two independent supply voltages and force a built-in head park function when either is below minimum. When activated by either the UV comparator, or a command at the separate PARK input, the park circuitry will override the amplifier inputs to convert the power outputs to a programmable constant voltage source which will hold regulation as the supply voltage falls to below 3.0 Volts. Added features include a POWER OK flag output, a LIMIT input to force the drive output to its maximum level in either polarity, and a over-riding INHIBIT input to disable all amplifiers and reduce quiescent supply current.

This device is packaged in a power PLCC surface mount configuration which maintains a standard 28-pin outline, but with 7 pins along one edge allocated to ground for optimum thermal transfer. And is also available in a 24-pin surface mount SOIC package.

BLOCK DIAGRAM

UC3175B

ABSOLUTE MAXIMUM RATINGS

Note 1: Unless otherwise indicated, voltages are referenced to ground and currents are positive into, negative out of, the specified terminals. "Pulsed" is defined as a less than 10% duty cycle pulse with a maximum duration of 500µs. Note 2: See Unitrode Integrated Circuits databook for information regarding thermal specifications and limitations of packages.

Thermal Data QP Package:

Thermal Resistance Junction to Leads,
θJL
Thermal Resistance Junction to Ambient,
θja

CONNECTION DIAGRAMS

		PLCC-28 (Top View)	PACKAGE PIN FUNCTIO	PACKAGE PIN FUNCTION		
DW Package		QP Package	FUNCTION	PIN		
		C	+VIN	1		
			INH	2		
+VIN 1	24 C/S Out		UV2	3		
	Bark Drive		UV1	4		
	23 Faik Dilve		Limit	5		
UV2 3	22 Park	4 3 2 1 28 27 26	Park Volts	6		
	21 Pwr OK	5 25	C/S-	7		
			A+/REF Input	8		
Limit 5	20 C/S+		A- In	9		
Park Volts 6	19 B+ In		A Output	10		
0/8 7	10 D in	8 22	A Cur Sen	11		
		9 21	Gnd (Heat Dissipation Pins)	12-18		
A+/REF Input 8	17 +Vc Supply	10 20	B Cur Sen	19		
A- In 9	16 B Output		B Output	20		
	G	12 13 14 15 16 17 18	+Vc Supply	21		
A Output 10	15 B Output		B- In	22		
A Output 11	14 B Cur Sen		B+ In	23		
A Cur Sen 12	12 Gnd		C/S+	24		
			Pwr OK	25		
			Park	26		
			Park Drive	27		
			C/S Out	28		

ELECTRICAL CHARACTERISTICS: Unless otherwise stated specifications apply for 0°C ≤ TA ≤ 70°C, +VIN = 12V, +VC

= +VIN, A+/REF Input = 6V. TA=TJ. MAX UNITS PARAMETER **TEST CONDITIONS** MIN ТҮР **INPUT SUPPLY** All Amplifier Outputs = 6V +VIN Supply Current 35 42 mΑ +Vc Supply Current IOUT = 0A 1 mΑ +VIN UVLO Threshold Low to High 2.8 3.0 V UVLO Threshold Hysteresis 200 mV

 $\label{eq:characteristics} \begin{array}{l} \textbf{ELECTRICAL} \\ \textbf{CHARACTERISTICS (cont.)} \end{array} \quad Unless otherwise stated specifications apply for 0°C \leq TA \leq 70°C, +VIN = 12V, +VC = +VIN, \\ A+/REF INPUT = 6V. TA=TJ. \end{array}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
UNDER VOLTAGE (UV) COMPARATOR			1	1	<u> </u>
Input Bias Current		-1.5	-0.5		μA
UV Thresholds	Low to High, Other Input = 5V	1.48	1.50	1.52	V
UV Threshold Hysteresis		15	25	40	mV
Pwr OK Vsat	IOUT = 5mA			0.45	V
Pwr OK Leakage	Vout = 20V			5	μA
POWER AMPLIFIERS A and B				I	1 .
Input Offset Voltage	VCM = 6V, A Amplifier			8	mV
	B Amplifier			12	mV
Input Offset Drift	Note 1, A Amplifier Only			25	μV/°C
Input Bias Current	VCM = 6V, except A+/REF Input	-500	-150		nA
Input Offset Current	VCM = 6V, B Amplifier Only			200	nA
Input Bias Current at A+/Ref Input	(A+/Ref–C/S+)/12k, TJ = 25°C	60	84	105	μA/V
CMRR	$1V \leq VCM \leq 10V$	70	90		dB
PSRR	+VIN = 4V to 15V, VCM = 1.5V	70	90		dB
Large Signal Voltage Gain	VOUT = 1V. Sinking 500mA to VOUT = 11V.				
	Sourcing 500mA	3.0	15.0		V/mV
Slew Rate	1 to 13V. 13 to 1V. TJ = 25°C		1	2.1	V/us
Unity Gain Bandwidth	Note 1. A Amplifier		2		MHz
	Note 1. B Amplifier		1		MHz
High-Side Current Limit		0.8	1.0		Α
Output Saturation Voltage	High-Side, ISOURCE = 250mA		0.7		V
	High-Side, ISOURCE = 800mA		0.85		V
	Low-Side. ISINK = 250mA		0.3		V
	Low-Side, ISINK = 800mA		0.4		V
	Total. IOUT = 250mA		1.0	1.2	V
	Total, IOUT = 800mA		1.25	1.6	V
High Side Diode VF	ID = 800mA. Inhibit Activated		1.0		V
Low Side Diode VF	$I_D = 800 \text{mA}$. Inhibit Activated		1.0		V
CURRENT SENSE AMPLIFIER					<u> </u>
Input Offset Voltage	$V_{CM} = 6V$			2.0	mV
Input Offset Change with Common Mode	$0V \le V_{CM} \le 12V$				
Input				1500	цV/V
Input Offset Drift	Note 1			8	µV/°С
Voltage Gain	$-1.0V \le VDIFE \le +1.0V$ VCM = 6V	1.95	2 00	2 05	V
Output Saturation Voltage	1 ow-Side Isink = 1.5mA	1.00	0.3	0.5	V
Ouput Galdration Voltage	High-Side Isource = $1.5mA$	-	0.0	0.0	V
Maximum A+/Ref Input	Volts Below +VIN_C/S+ & C/S- = BOUTPUT Max @		0.1	0.7	-
	10mA Output Current $+V_{IN} = 4.5V_{C}/S_{VIO} < 5mV$		26	3.0	v
PARKING FUNCTION			2.0	0.0	Y
Park Input Threshold		07	1 1	17	V
Park Input Current	Park Input = 1 7V	0.1	60	100	ν 11 Δ
Park Drive Saturation Voltage PDVsAT	$I_{\text{SINK}} = 100 \text{mA}$		0.3	0.5	V
Parking Drive Leakage			0.0	100	
Amplifier A Aux Input Rias Current	V001 - 20V	-500	-150	100	n A
Ampline A Aux input bias outlent		-500	-100	1	

ELECTRICAL Unless otherwise stated specifications apply for 0°C ≤ TA ≤ 70°C, +VIN = 12V, +Vc = +VIN, CHARACTERISTICS (cont.) A+/REF Input = 6V. TA=TJ. PARAMETER TEST CONDITIONS MIN TYP MAX UNITS

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
PARKING FUNCTIONS (cont.)					
Amplifier A Saturation Voltage, AHVSAT	ISOURCE = 50mA, +VIN = 3V		0.65	0.8	V
Regulating Voltage at Park Volts		1.47	1.50	1.53	V
Minimum Parking Supply Voltage	AHVSAT + PDVSAT ≤ 1.3V @ 50mA		1.7	1.9	V
AUXILIARY FUNCTIONS					
Limit Input Low Voltage	A Output Forced Low	0.7	0.8		V
Limit Input High Voltage	A Output Forced High		2.2	2.3	V
Limit Inactive		1.2		1.8	V
Limit Open Circuit Voltage		1.45	1.50	1.55	V
Limit Input Resistance	1.2V ≤ Limit Input ≤ 1.8V		10		kΩ
Inhibit Input Threshold		0.7	1.1	1.7	V
Inhibit Input Current	Inhibit Input = 1.7V		400	700	μA
Supply Current when Inhibited	The sum of +VIN and +Vc currents		2	6	mA
Thermal Shutdown Temperature			165		°C

Note 1: This specification not tested in production.

UC3175B Series Current Sensing

Parking Function

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated