SN74ACT7813 64×18 CLOCKED FIRST-IN, FIRST-OUT MEMORY

RESET

D17 🛮 2

D16 🛮 3

D15 **∏**4

D14 🛮 5

D13 🛮 6

D12 | 7

V_{CC} **∐** 10

D9 11

D8 112

GND [] 13

D7 [14

D6 [15

D5 Π 16

D4 [] 17

D3 18

D2 119

D1 20

D0 [21

22

23

ΗF

AF/AE 124

PEN

WRTCLK 125

WRTEN2 26

WRTEN1 127

IR 28

8 D10 **9**

D11

DL PACKAGE (TOP VIEW)

SCAS199B - JANUARY 1991 - REVISED APRIL 1998

56 OE1

₅₅ 🛛 Q17

54 Q16

53 Q15

52 GND

51 Q14

50 VCC

49 **∏** Q13

48 Q12

47 **∏** Q11

46 Q10

44] GND

45 Q9

43 Q8

42 **∏** Q7

41 ¶ Q6

40 Q5

37 Q3

36 | Q2

34 🛛 Q1

33 Q0

32 RDCLK

31 RDEN

30 OE2 29 🛮 OR

35 GND

39 VCC 38 🛮 Q4

Member of	the	Texas	Instruments
$\textbf{Widebus}^{\text{\tiny{TM}}}$	Fam	nily	

- Free-Running Read and Write Clocks Can **Be Asynchronous or Coincident**
- **Read and Write Operations Synchronized** to Independent System Clocks
- Input-Ready Flag Synchronized to Write
- **Output-Ready Flag Synchronized to Read** Clock
- 64 Words by 18 Bits
- **Low-Power Advanced CMOS Technology**
- Half-Full Flag and Programmable Almost-Full/Almost-Empty Flag
- **Bidirectional Configuration and Width Expansion Without Additional Logic**
- Fast Access Times of 12 ns With a 50-pF Load and All Data Outputs Switching Simultaneously
- Data Rates up to 67 MHz
- Pin-to-Pin Compatible With SN74ACT7803 and SN74ACT7805
- Packaged in Shrink Small-Outline 300-mil Package Using 25-mil Center-to-Center Spacing

description

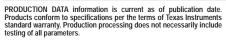
The SN74ACT7813 is a 64-word × 18-bit FIFO suited for buffering asynchronous datapaths up to 67-MHz clock rates and 12-ns access times. Two

devices can be configured for bidirectional data buffering without additional logic. Multiple distributed V_{CC} and GND pins, along with Texas Instruments patented output edge control (OEC™) circuit, dampen simultaneous switching noise.

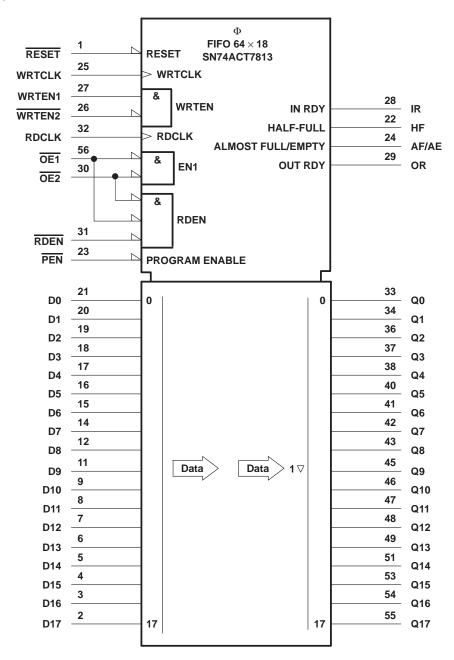
The write clock (WRTCLK) and read clock (RDCLK) are free running and can be asynchronous or coincident. Data is written to memory on the rising edge of WRTCLK when WRTEN1 is high, WRTEN2 is low, and input ready (IR) is high. Data is read from memory on the rising edge of RDCLK when RDEN, OE1, and OE2 are low and output ready (OR) is high. The first word written to memory is clocked through to the output buffer regardless of the RDEN, OE1, and OE2 levels. The OR flag indicates that valid data is present on the output buffer.

The FIFO can be reset asynchronously to WRTCLK and RDCLK. RESET must be asserted while at least four WRTCLK and four RDCLK rising edges occur to clear the synchronizing registers. Resetting the FIFO initializes the IR, OR, and half-full (HF) flags low and the almost-full/almost-empty (AF/AE) flag high. The FIFO must be reset upon power up.

The SN74ACT7813 is characterized for operation from 0°C to 70°C.

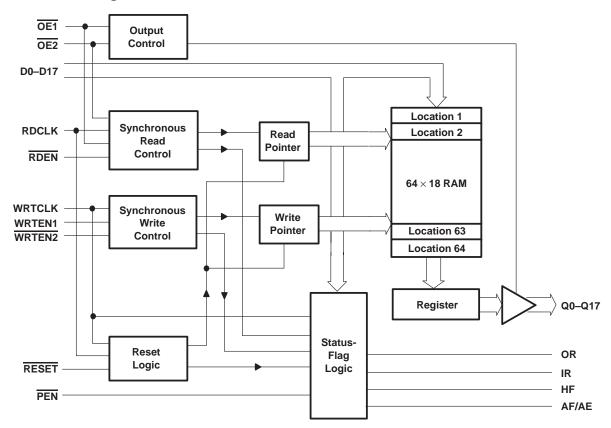


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


Widebus and OEC are trademarks of Texas Instruments Incorporated.

IEXAS NSTRUMENTS

Copyright © 1998, Texas Instruments Incorporated


logic symbol†

 $[\]ensuremath{^{\dagger}}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

functional block diagram

SN74ACT7813 64×18 CLOCKED FIRST-IN, FIRST-OUT MEMORY

SCAS199B – JANUARY 1991 – REVISED APRIL 1998

Terminal Functions

TERMINAL			
NAME	NO.	I/O	DESCRIPTION
AF/AE	24	0	Almost-full/almost-empty flag. Depth offset values can be programmed for AF/AE, or the default value of 8 can be used for both the AE offset (X) and the AF offset (Y). AF/AE is high when memory contains X or fewer words or (64 – Y) or more words. AF/AE is high after reset.
D0-D17	21–14, 12–11, 9–2	-1	18-bit data input port
HF	22	0	Half-full flag. HF is high when the FIFO memory contains 32 or more words. HF is low after reset.
IR	28	0	Input-ready flag. IR is synchronized to the low-to-high transition of WRTCLK. When IR is low, the FIFO is full and writes are disabled. IR is low during reset and goes high on the second low-to-high transition of WRTCLK after reset.
OE1, OE2	56, 30	I	Output enables. When OE1, OE2, and RDEN are low and OR is high, data is read from the FIFO on a low-to-high transition of RDCLK. When either OE1 or OE2 is high, reads are disabled and the data outputs are in the high-impedance state.
OR	29	0	Output-ready flag. OR is synchronized to the low-to-high transition of RDCLK. When OR is low, the FIFO is empty and reads are disabled. Ready data is present on Q0–Q17 when OR is high. OR is low during reset and goes high on the third low-to-high transition of RDCLK after the first word is loaded to empty memory.
PEN	23	-	Program enable. After reset and before the first word is written to the FIFO, the binary value on D0–D4 is latched as an AF/AE offset value when PEN is low and WRTCLK is high.
Q0-Q17	33–34, 36–38, 40–43, 45–49, 51, 53–55	0	The 18-bit data output port. After the first valid write to empty memory, the first word is output on Q0–Q17 on the third rising edge of RDCLK. OR also is asserted high at this time to indicate ready data. When OR is low, the last word read from the FIFO is present on Q0–Q17.
RDCLK	32	I	Read clock. RDCLK is a continuous clock and can be asynchronous or coincident to WRTCLK. A low-to-high transition of RDCLK reads data from memory when OE1, OE2, and RDEN are low and OR is high. OR is synchronous to the low-to-high transition or RDCLK.
RDEN	31	I	Read enable. When RDEN, OE1, and OE2 are low and OR is high, data is read from the FIFO on the low-to-high transition of RDCLK.
RESET	1	I	Reset. To reset the FIFO, four low-to-high transitions of RDCLK and four low-to-high transitions of WRTCLK must occur while RESET is low. This sets HF, IR, and OR low and AF/AE high.
WRTCLK	25	I	Write clock. WRTCLK is a continuous clock and can be asynchronous or coincident to RDCLK. A low-to-high transition of WRTCLK writes data to memory when WRTEN2 is low, WRTEN1 is high, and IR is high. IR is synchronous to the low-to-high transition of WRTCLK.
WRTEN1, WRTEN2	27, 26	I	Write enables. When WRTEN1 is high, $\overline{\text{WRTEN2}}$ is low, and IR is high, data is written to the FIFO on a low-to-high transition of WRTCLK.

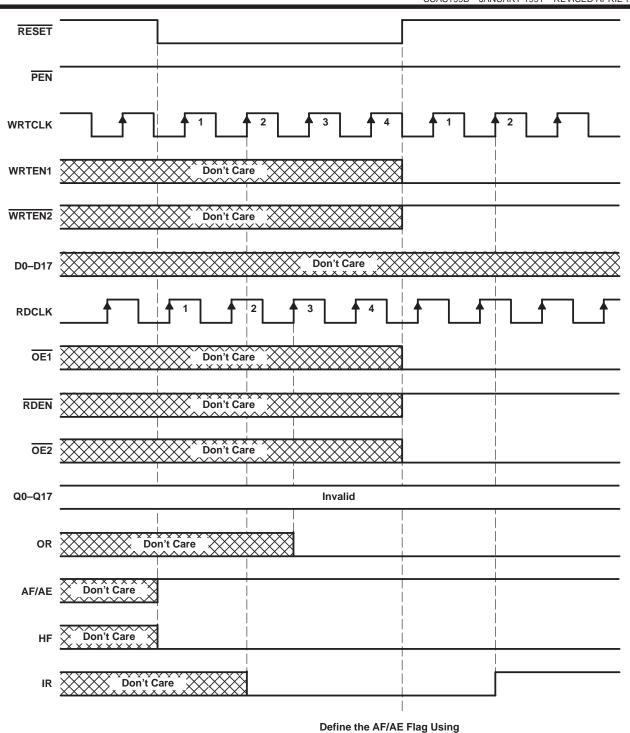


Figure 1. Reset Cycle

the Default Value of X = Y = 8

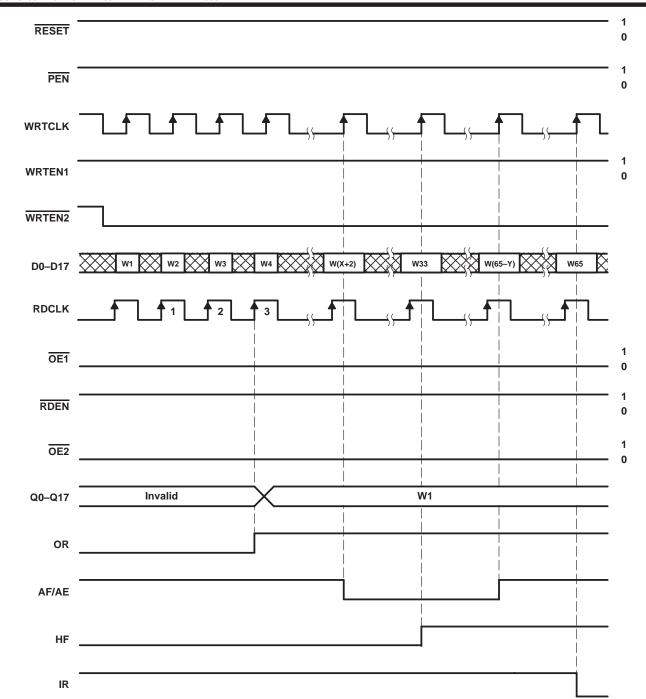


Figure 2. Write Cycle

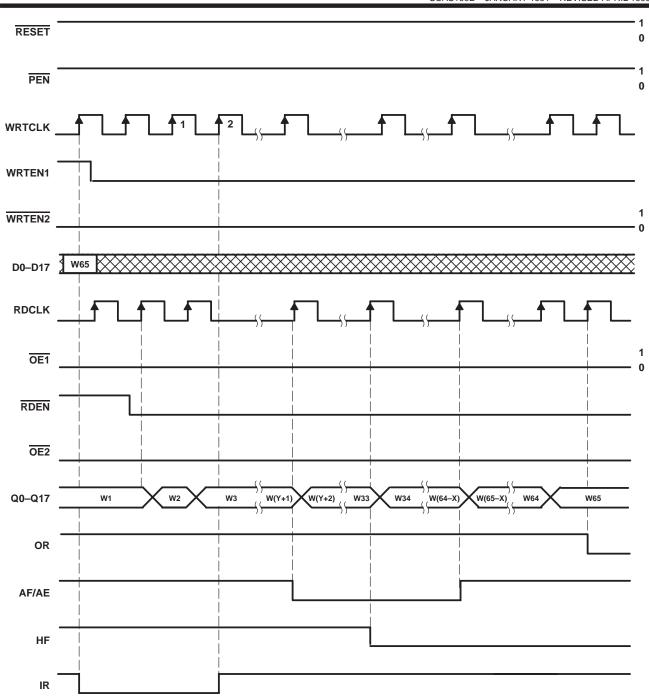


Figure 3. Read Cycle

offset values for AF/AE

The AF/AE flag has two programmable limits: the AE offset value (X) and the AF offset value (Y). They can be programmed after the FIFO is reset and before the first word is written to memory. If the offsets are not programmed, the default values of X = Y = 8 are used. The AF/AE flag is high when the FIFO contains X or fewer words or (64 - Y) or more words.

Program enable (PEN) should be held high throughout the reset cycle. PEN can be brought low only when IR is high and WRTCLK is low. On the following low-to-high transition of WRTCLK, the binary value on D0-D4 is stored as the AE offset value (X) and the AF offset value (Y). Holding PEN low for another low-to-high transition of WRTCLK reprograms Y to the binary value on D0-D4 at the time of the second WRTCLK low-to-high transition. When the offsets are being programmed, writes to the FIFO memory are disabled regardless of the state of the write enables (WRTEN1, WRTEN2). A maximum value of 31 can be programmed for either X or Y (see Figure 4). To use the default values of X = Y = 8, \overline{PEN} must be held high.

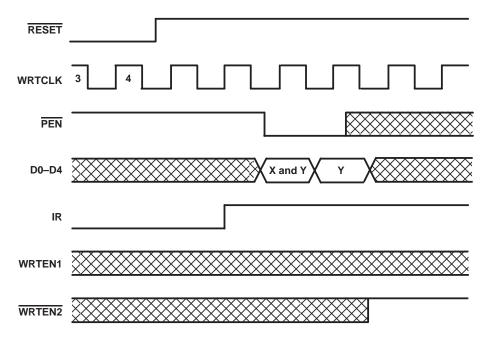


Figure 4. Programming X and Y Separately

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I	0.5 V to 7 V
Voltage range applied to a disabled 3-state output	–0.5 V to 5.5 V
Package thermal impedance, θ _{JA} (see Note 1)	74°C/W
Storage temperature range, T _{stg}	−65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.

SN74ACT7813 64×18 CLOCKED FIRST-IN, FIRST-OUT MEMORY

SCAS199B - JANUARY 1991 - REVISED APRIL 1998

recommended operating conditions

			'ACT78	'ACT7813-15		'ACT7813-20		'ACT7813-25		'ACT7813-40		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	
Vcc	Supply voltage		4.5	5.5	4.5	5.5	4.5	5.5	4.5	5.5	V	
VIH	High-level input voltage		2		2		2		2		V	
VIL	Low-level input voltage			0.8		0.8		0.8		0.8	V	
ІОН	High-level output current	Q outputs, flags		-8		-8		-8		-8	mA	
la.		Q outputs		16		16		16		16	0	
lor	Low-level output current	Flags		8		8		8		MAX 5.5 0.8 -8	mA	
TA	Operating free-air temperature		0	70	0	70	0	70	0	70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	ARAMETER		TEST CONDITION	ONS	MIN	TYP [†]	MAX	UNIT
Vон		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -8 \text{ mA}$		2.4			V
Vai	Flags	$V_{CC} = 4.5 \text{ V},$	$I_{OL} = 8 \text{ mA}$				0.5	V
VOL	Q outputs	$V_{CC} = 4.5 \text{ V},$	I _{OL} = 16 mA				0.5	٧
Ц		$V_{CC} = 5.5 \text{ V},$	$V_I = V_{CC}$ or 0				±5	μΑ
loz		$V_{CC} = 5.5 \text{ V},$	VO = VCC or 0				±5	μΑ
Icc		$V_{I} = V_{CC} - 0.2 V_{C}$	or 0				400	μΑ
∆lcc [‡]		$V_{CC} = 5.5 V$,	One input at 3.4 V,	Other inputs at V _{CC} or GND			1	mA
Ci		V _I = 0,	f = 1 MHz			4	·	pF
Co		V _O = 0,	f = 1 MHz			8		pF

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. ‡ This is the supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

SN74ACT7813 64×18 CLOCKED FIRST-IN, FIRST-OUT MEMORY

SCAS199B - JANUARY 1991 - REVISED APRIL 1998

timing requirements over recommended operating conditions (unless otherwise noted) (see Figure 5)

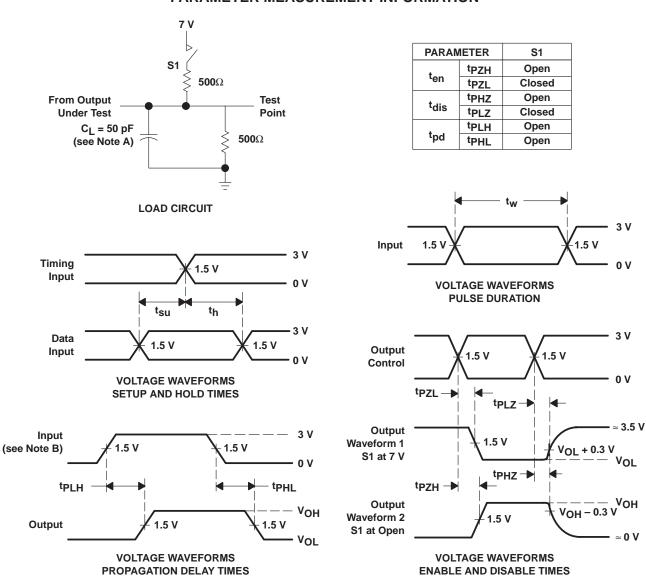
			'ACT7813-15 'A		'ACT78	313-20	'ACT7813-25		'ACT7813-40		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	
fclock	Clock frequency			67		50		40		25	MHz	
		WRTCLK high or low	6		7		8		12			
t _W	Pulse duration	RDCLK high or low	6		7		8		12		ns	
		PEN low	8		9		9		12			
		D0-D17 before WRTCLK↑										
		WRTEN1, WRTEN2 before WRTCLK1	4		5		5		5		ns	
۱.	Catua tima	OE1, OE2 before RDCLK↑	5		5		6		6	MAX 25		
^l su	Setup time	RDEN before RDCLK↑	4		5		5		5			
		Reset: RESET low before first WRTCLK↑ and RDCLK↑†	5		6		50 40 25 8 12 8 12 9 12 5 5 5 5 6 6					
		PEN before WRTCLK↑	5		6		6		6			
		D0-D17 after WRTCLK↑	0		0		0		0			
		WRTEN1, WRTEN2 after WRTCLK↑	efore RDCLK↑ 4 5 5 ESET low before TCLK↑ and RDCLK↑↑ 5 6 6 ore WRTCLK↑ 5 6 6 6 after WRTCLK↑ 0 0 0 0 1, WRTEN2 TCLK↑ 0 0 0 0									
١.,	Hold time	OE1, OE2, RDEN after RDCLK↑	0		0		0		0			
ı 'h	i ioia tiifle	Reset: RESET low after fourth WRTCLK↑ and RDCLK↑	2		2	50 40 25 8 12 9 12 5 5 5 5 6 6 5 5 6 6 6 6 6 6 0 0 0 0 2 2 0 0	ns					
$t_{W} \text{Pulse duration} \frac{\text{RDCLK high or low}}{\text{PEN low}} \frac{6}{\text{PEN low}} \frac{7}{\text{Nester RESET low before WRTCLK}^{\uparrow}} \frac{4}{\text{Nester RDCLK}^{\uparrow}} \frac{5}{\text{Nester WRTCLK}^{\uparrow}} \frac{5}{\text{Nester WRTCLK}^{\uparrow}} \frac{5}{\text{Nester RDCLK}^{\uparrow}} \frac{5}{\text{Nester RESET low before first WRTCLK}^{\uparrow}} \frac{5}{\text{Nester WRTCLK}^{\uparrow}} \frac{5}{\text{Nester WRTCLK}^{\uparrow}} \frac{5}{\text{Nester WRTCLK}^{\uparrow}} \frac{5}{\text{Nester WRTCLK}^{\uparrow}} \frac{6}{\text{Nester WRTCLK}^{\uparrow}} \frac{5}{\text{Nester WRTCLK}^{\uparrow}} \frac{6}{\text{Nester RESET low after fourth WRTCLK}^{\uparrow}} \frac{6}{\text{Nester RESET low after fourth WRTCLK}^{\uparrow}} \frac{6}{\text{Nester RESET low after gouth WRTCLK}^{\uparrow}} \frac{6}{\text{Nester WRTCLK}^{\uparrow}} \frac{6}{\text{Nester WRTCLK}^{\uparrow}} \frac{6}{\text{Nester RESET low after gouth WRTCLK}^{\uparrow}}} \frac{6}{\text{Nester WRTCLK}^{\uparrow}} \frac{6}{\text{Nester WRTCLK}^{\uparrow}} \frac{6}{\text{Nester WRTCLK}^{\uparrow}}} \frac{6}{\text{Nester WRTCLK}^{\uparrow}} \frac{6}{\text{Nester WRTCLK}^{\uparrow}}} \frac{6}{\text{Nester WRTCLK}^{\uparrow}$	0											
		PEN low after WRTCLK↑	2		2		2		2			

 $[\]ensuremath{^{\dagger}}$ To permit the clock pulse to be utilized for reset purposes

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50$ pF (see Figure 5)

PARAMETER	FROM	то	'A	CT7813-	15	'ACT78	313-20	'ACT78	313-25	'ACT78	313-40	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP [‡]	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
fmax	WRTCLK or RDCLK		67			50		40		25		MHz
^t pd	RDCLK↑	Any Q	4	9.5	12	4	13	4	15	4	20	ns
t _{pd} §	RDCLK↑	Any Q		8.5								ns
	WRTCLK↑	IR	3		8.5	3	11	3	13	3	15	
.	RDCLK↑	OR	3		8.5	3	11	3	13	3	15	ns
^t pd	WRTCLK↑	AF/AE	7		16.5	7	19	7	21	7	23	115
	RDCLK↑	AF/AL	7		17	7	19	7	21	7	23	
t _{PLH}	WRTCLK↑	HF	7		15	7	17	7	19	7	21	ns
t _{PHL}	RDCLK↑	HF	7		15.5	7	18	7	20	7	22	ns
t _{PLH}	RESET low	AF/AE	2		9	2	11	2	13	2	15	ns
^t PHL	RESET low	HF	2		10	2	12	2	14	2	16	ns
t _{en}	OE1, OE2	Any Q	2		8.5	2	11	2	11	2	11	ns
^t dis	OE1, OE2	Any Q	2		9.5	2	11	2	14	2	14	ns

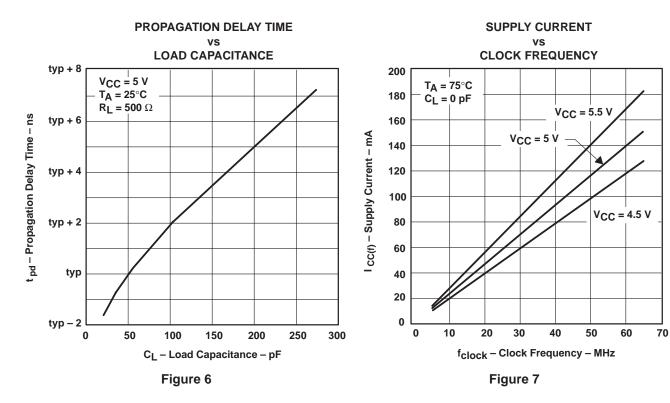
[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.


[§] This parameter is measured with a 30-pF load (see Figure 6).

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER			TEST CO	TYP	UNIT	
C _{pd}	Power dissipation capacitance	Outputs enabled	$C_L = 50 \text{ pF},$	f = 5 MHz	53	pF

PARAMETER MEASUREMENT INFORMATION



NOTE A: C_L includes probe and jig capacitance.

Figure 5. Load Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

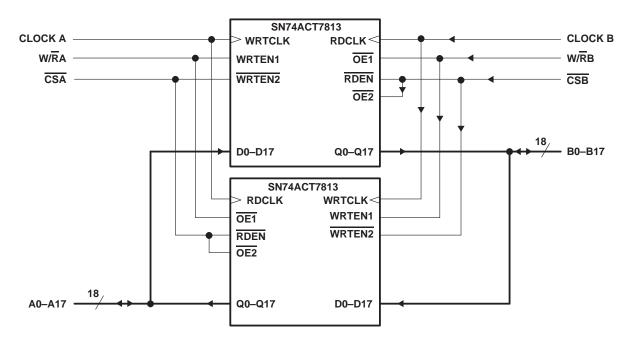


Figure 8. Bidirectional Configuration

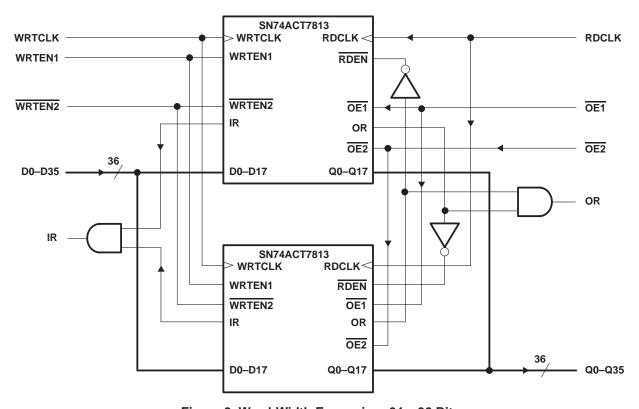


Figure 9. Word-Width Expansion: 64×36 Bits

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated