- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Independent Asynchronous Inputs and Outputs
- Read and Write Operations Can Be Synchronized to Independent System Clocks
- Programmable Almost-Full/Almost-Empty Flag
- Pin-to-Pin Compatible With SN74ACT7882, SN74ACT7884, and SN74ACT7811
- Input-Ready, Output-Ready, and Half-Full Flags
- Expandable in Word Width and/or Word Depth
- Fast Access Times of 11 ns With a $50-\mathrm{pF}$ Load
- High Output Drive for Direct Bus Interface
- Package Options Include 68-Pin Plastic Leaded Chip Carrrier (FN) or 80-Pin Shrink Quad Flat (PN) Package

NC - No internal connection

description

A FIFO memory is a storage device that allows data to be written into and read from its array at independent data rates. The SN74ACT7881 is organized as 1024×18 bits. The SN74ACT7881 processes data at rates up to 67 MHz and access times of 11 ns in a bit-parallel format. Data outputs are noninverting with respect to the data inputs. Expansion is accomplished easily in both word width and word depth.
The SN74ACT7881 has normal input-bus to output-bus asynchronous operation. The special enable circuitry adds the ability to synchronize independent reads and writes to their respective system clocks.

The SN74ACT7881 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the FN package.

SN74ACT7881
1024×18
CLOCKED FIRST-IN, FIRST-OUT MEMORY
SCAS227E - FEBRUARY 1993 - REVISED APRIL 1998
functional block diagram

Terminal Functions

TERMINAL \dagger			DESCRIPTION
NAME	NO.	1/0	
AF/AE	33	0	Almost-full/almost-empty flag. The AF/AE boundary is defined by the AF/AE offset value (X). This value can be programmed during reset, or the default value of 256 can be used. AF/AE is high when the FIFO contains $(X+1)$ or fewer words or $(1025-X)$ or more words. AF/AE is low when the FIFO contains between $(X+2)$ and ($1024-X$) words. Programming procedure for AF/AE - The AF/AE flag is programmed during each reset cycle. The AF/AE offset value (X) is either a user-defined value or the default of $X=256$. Instructions to program AF/AE using both methods are as follows: User-defined X Step 1: Take $\overline{\mathrm{DAF}}$ from high to low. Step 2: If $\overline{R E S E T}$ is not already low, take $\overline{\text { RESET }}$ low. Step 3: With $\overline{\mathrm{DAF}}$ held low, take $\overline{\mathrm{RESET}}$ high. This defines the AF/AE using X. Step 4: To retain the current offset for the next reset, keep $\overline{\mathrm{DAF}}$ low. Default X To redefine AF/AE using the default value of $X=256$, hold $\overline{\text { DAF }}$ high during the reset cycle.
$\overline{\text { DAF }}$	27	I	Define-almost-full. The high-to-low transition of $\overline{\mathrm{DAF}}$ stores the binary value of data inputs as the AF/AE offset value (X). With $\overline{\mathrm{DAF}}$ held low, a low pulse on $\overline{\text { RESET }}$ defines the AF/AE flag using X.
D0-D17	$\begin{gathered} 26-19,17, \\ 15-7 \end{gathered}$	1	Data inputs for 18 -bit-wide data to be stored in the memory. A high-to-low transition of $\overline{\mathrm{DAF}}$ captures data for the AF/AE offset (X) from D8-D0.
HF	36	0	Half-full flag. HF is high when the FIFO contains 512 or more words and is low when the number of words in memory is less than half the depth of the FIFO.
IR	35	0	Input-ready flag. IR is high when the FIFO is not full and low when the device is full. During reset, IR is driven low on the rising edge of the second WRTCLK pulse. IR is then driven high on the rising edge of the second WRTCLK pulse after RESET goes high. After the FIFO is filled and IR is driven low, IR is driven high on the second WRTCLK pulse after the first valid read.
OE	2	1	Output enable. The Q0-Q17 outputs are in the high-impedance state when OE is low. OE must be high before the rising edge of RDCLK to read a word from memory.
OR	66	0	Output-ready flag. OR is high when the FIFO is not empty and low when the FIFO is empty. During reset, OR is set low on the rising edge of the third RDCLK pulse. OR is set high on the rising edge of the third RDCLK pulse to occur after the first word is written into the FIFO. OR is set low on the rising edge of the first RDCLK pulse after the last word is read.
Q0-Q17	$\begin{gathered} \hline 38-39,41-42, \\ 44,46-47, \\ 49-50,52-53, \\ 55-56,58-59, \\ 61,63-64 \end{gathered}$	0	Data outputs. The first data word to be loaded into the FIFO is moved to Q0-Q17 on the rising edge of the third RDCLK pulse to occur after the first valid write. RDEN1 and RDEN2 do not affect this operation. Following data is unloaded on the rising edge of RDCLK when RDEN1, RDEN2, OE, and OR are high.
RDCLK	5	1	Read clock. Data is read out of memory on the low-to-high transition of RDCLK if OR, OE, RDEN1, and RDEN2 are high. RDCLK is a free-running clock and functions as the synchronizing clock for all data transfers out of the FIFO. OR also is driven synchronously with respect to the RDCLK signal.
RDEN1 RDEN2	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	I	Read enable. RDEN1 and RDEN2 must be high before a rising edge on RDCLK to read a word out of memory. RDEN1 and RDEN2 are not used to read the first word stored in memory.
RESET	1	1	Reset. A reset is accomplished by taking $\overline{\text { RESET }}$ low and generating a minimum of four RDCLK and WRTCLK cycles. This ensures that the internal read and write pointers are reset and that OR, HF, and IR are low, and AF/AE is high. The FIFO must be reset upon power up. With $\overline{D A F}$ at a low level, a low pulse on $\overline{R E S E T}$ defines AF/AE using the AF/AE offset value (X), where X is the value previously stored. With $\overline{D A F}$ at a high level, a low-level pulse on $\overline{R E S E T}$ defines the AF/AE flag using the default value of $X=256$.
WRTCLK	29	I	Write clock. Data is written into memory on a low-to-high transition of WRTCLK if IR, WRTEN1, and WRTEN2 are high. WRTCLK is a free-running clock and functions as the synchronizing clock for all data transfers into the FIFO. IR also is driven synchronously with respect to WRTCLK.
WRTEN1 WRTEN2	$\begin{aligned} & 30 \\ & 31 \end{aligned}$	I	Write enable. WRTEN1 and WRTEN2 must be high before a rising edge on WRTCLK for a word to be written into memory. WRTEN1 and WRTEN2 do not affect the storage of the AF/AE offset value (X).

\dagger Terminals listed are for the FN package.

${ }^{\dagger} X$ is the binary value on D8-D0.
Figure 1. Reset Cycle: Define AF/AE Flag Using a Programmed Value of X

Figure 2. Reset Cycle: Define AF/AE Flag Using the Default Value of $X=256$

SN74ACT7881

1024×18
CLOCKED FIRST-IN, FIRST-OUT MEMORY
SCAS227E - FEBRUARY 1993 - REVISED APRIL 1998

DATA-WORD NUMBERS FOR FLAG TRANSITIONS

TRANSITION WORD		
A	B	C
W 513	$\mathrm{~W}(1025-\mathrm{X})$	W 1025

Figure 3. Write Cycle

Figure 4. Read Cycle

SN74ACT7881

1024×18
CLOCKED FIRST-IN, FIRST-OUT MEMORY
SCAS227E - FEBRUARY 1993 - REVISED APRIL 1998
absolute maximum ratings over operating free-air temperature range \dagger

Supply voltage range, V_{CC}	-0.5 V to 7 V
Input voltage range, V_{1}	-0.5 V to 7 V
Voltage range applied to a disabled 3-state output	-0.5 V to 5.5 V
Package thermal impedance, $\theta_{\text {JA }}$ (see Note 1): FN package	$39^{\circ} \mathrm{C} / \mathrm{W}$
PN package	$62^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.
recommended operating conditions

		MIN	MAX
UNIT			
V_{CC}	Supply voltage	4.5	5.5
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2	V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage	V	
I_{OH}	High-level output current	0.8	V
I_{OL}	Low-level output current	-8	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	mA	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN	TYP\#	MAX	UNIT
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-8 \mathrm{~mA}$	2.4			V
$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=16 \mathrm{~mA}$			0.5	V
I	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0			± 5	$\mu \mathrm{A}$
IOZ	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or 0			± 5	$\mu \mathrm{A}$
$1 \mathrm{cc}{ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ or 0				400	$\mu \mathrm{A}$
	One input at 3.4 V,	Other inputs at V_{CC} or GND			1.2	mA
C_{i}	$\mathrm{V}_{1}=0$,	$\mathrm{f}=1 \mathrm{MHz}$		4		pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=0$,	$\mathrm{f}=1 \mathrm{MHz}$		8		pF

[^0]timing requirements over recommended ranges of supply voltage and operating free-air temperature (see Figures 1 through 5)

\dagger To permit the clock pulse to be utilized for reset purposes
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 5)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	'ACT7881-15		'ACT7881-20		'ACT7881-30		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	WRTCLK or RDCLK		67		50		33.4		MHz
tpd	RDCLK \uparrow	Any Q	3	12	3	13	3	18	ns
tpd^{\ddagger}	RDCLK \uparrow	Any Q							ns
tpd	WRTCLK \uparrow	IR	2	8	2	9.5	2	12	ns
	RDCLK \uparrow	OR	2	8	2	9.5	2	12	
	WRTCLK \uparrow	AF/AE	6	17	6	19	6	22	
	RDCLK \uparrow		6	17	6	19	6	22	
tPLH	WRTCLK \uparrow	HF	6	14	6	17	6	21	ns
tPHL	RDCLK \uparrow	HF	6	14	6	17	6	21	ns
tPLH	$\overline{\text { RESET }} \downarrow$	AF/AE	3	12	3	17	3	21	ns
tPHL	$\overline{\text { RESET }} \downarrow$	HF	3	14	3	19	3	23	ns
ten	OE	Any Q	2	9	2	11	2	11	ns
$\mathrm{t}_{\text {dis }}$	OE	Any Q	2	10	2	14	2	14	ns

[^1]SN74ACT7881
1024×18
CLOCKED FIRST-IN, FIRST-OUT MEMORY
SCAS227E - FEBRUARY 1993 - REVISED APRIL 1998

operating characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	TYP	UNIT
$\mathrm{C}_{\mathrm{pd}} \quad$ Power dissipation capacitance per 1K bits	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \mathrm{f}=5 \mathrm{MHz}$	65	pF	

NOTEA: CL incures proe and capan

Figure 5. Load Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

PROPAGATION DELAY TIME

vs
LOAD CAPACITANCE

Figure 6

APPLICATION INFORMATION

expanding the SN74ACT7881

The SN74ACT7881 is expandable in both word width and word depth. Word-depth expansion is accomplished by connecting the devices in series such that data flows through each device in the chain. Figure 8 shows two SN74ACT7881 devices configured for word-depth expansion. The common clock between the devices can be tied to either the write clock (WRTCLK) of the first device or the read clock (RDCLK) of the last device. The output-ready (OR) flag of the previous device and the input-ready (IR) flag of the next device maintain data flow to the last device in the chain whenever space is available.
Figure 9 shows two SN74ACT7881 devices in word-width expansion. Word-width expansion is accomplished by simply connecting all common control signals between the devices and creating composite IR and OR signals. The almost-full/almost-empty (AF/AE) flag and half-full (HF) flag can be sampled from any one device. Word-depth expansion and word-width expansion can be used together.

Figure 7. Word-Depth Expansion: 2048/4096/8192 $\times 18$ Bits, $\mathrm{N}=2$

Figure 8. Word-Width Expansion: 1024×36 Bits

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TIPRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

[^0]: \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 § ICC is tested with outputs open.

[^1]: \ddagger This parameter is measured with $C_{L}=30 \mathrm{pF}$ (see Figure 6).

