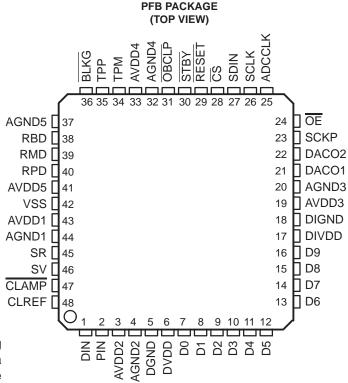
features


- Single-Chip CCD Analog Front-End
- 10-Bit, 42 MSPS, A/D Converter
- Single 3-V Supply Operation
- **Programmable Timing Signal Delays**
- Low Power: 180 mW Typ, 2-mW **Power-down Mode**
- **Differential Nonlinearity Error** - <±0.6 LSB Typ</p>
- **Integral Nonlinearity Error** - <±1.5 LSB Typ</p>
- Programmable Gain Amplifier (PGA) With 0 dB to 36 dB Gain Range (0.045 dB/Step)
- **Automatic or Programmable Black Level** and Offset Calibration With Digital Filter and Bad Pixel Limits
- Additional DACs for External Analog Setting
- **Serial Interface for Register Configuration**
- **Internal Reference Voltages**
- 48-Pin TQFP Package

description

The TAFE1040 is a complete area CCD analog front-end/digitizer designed for digital camera applications. The TAFE1040 performs all the analog processing functions necessary to max-

applications

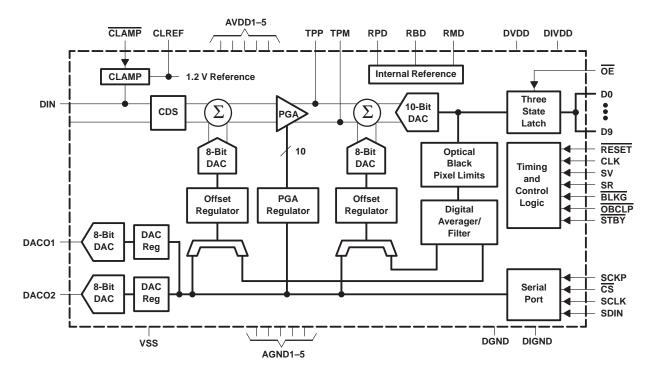
- Video Camcorde
- **Digital Still Camera**

mize the dynamic range, corrects various errors associated with the CCD sensor, and then digitizes the results with an on-chip high-speed analog-to-digital converter (ADC). The key components of the TAFE1040 include: input clamp circuitry for the CCD and analog video signals, a correlated double sampler (CDS), a programmable gain amplifier (PGA) with 0 dB to 36 dB gain range, two internal digital-to-analog converters (DAC) for automatic or programmable optical black level and offset calibration, a 10-bit, 42 MSPS pipeline ADC, a parallel data port for easy microprocessor interface and a serial port for configuring internal control registers, two additional DACs for external system control, and internal reference voltages.

Designed in advanced CMOS process, the TAFE1040 operates from a single 3-V power supply with a normal power consumption of 180 mW at 42 MSPS and a 2-mW power-down mode.

Very high throughput rate, single 3 V operation, low power consumption, and fully integrated analog processing circuitry make the TAFE1040 an ideal area CCD signal processing solution for the high-resolution digital camera and camcorder applications.

The part is available in a 48-pin TQFP package and is specified over -20°C to 75°C operating temperature range.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

AVAILABLE OPTIONS

	PACKAGE DEVICES
TA	TQFP
	(PFB)
−20°C to 75°C	TAFE1040CPFB

functional block diagram

Terminal Functions

TERMINAL				
NAME	NO.	1/0	DESCRIPTION	
ADCCLK	25	ı	ADC clock input	
DGND	5		Digital ground	
AGND1	44		Analog ground for internal CDS circuits	
AGND2	4		Analog ground for internal PGA circuits	
AGND3	20		Analog ground for internal DAC circuits	
AGND4	32		Analog ground for internal ADC circuits	
AGND5	37		Analog ground for internal REF circuits	
AVDD1	43		Analog supply voltage for internal CDS circuits, 3 V	
AVDD2	3		Analog supply voltage for internal PGA circuits, 3 V	
AVDD3	19		Analog supply voltage for internal DAC circuits, 3 V	
AVDD4	33		Analog supply voltage for internal ADC circuits, 3 V	
AVDD5	41		Analog supply voltage for internal ADC circuits, 3 V	
BLKG	36	ı	Control input. The CDS operation is disabled when the BLKG is pulled low.	
CLAMP	47	ı	CCD signal clamp control input	
CLREF	48	0	Clamp reference voltage output	
CS	28	ı	Chip select. A logic low on this input enables the TLV097A.	
DACO1	21	0	Digital-to-analog converter output1	
DACO2	22	0	Digital-to-analog converter output2	
DIGND	18		Digital interface circuit ground	
DIN	1	ı	Input signal from CCD	
DIVDD	17		Digital interface circuit supply voltage, 1.8 V-4.4 V	
DVDD	6		Digital supply voltage, 3 V	
D0-D9	7–16	0	10-Bit 3-state ADC output data or offset DACs test data	
OBCLP	31	Ι	Optical black level and offset calibration control input. Active low	
ŌĒ	24	ı	Output data enable. Active low	
PIN	2	ı	Input signal from CCD	
RBD	38	0	Internal bandgap reference for external decoupling	
RESET	29	ı	Hardware reset input, active low. This signal forces a reset of all internal registers.	
RMD	39	0	REF- output for external decoupling	
RPD	40	0	Ref+ output for external decoupling	
SCKP	23	I	This pin selects the polarity of SCLK. 0 – active low (high when SCLK is not running), 1 – active high (low when SCLK is not running)	
SCLK	26	ı	Serial clock input. This clock synchronizes the serial data transfer.	
SDIN	27	ı	Serial data input to configure the internal registers	
SR	45	ı	CCD reference level sample clock input	
STDY	30	ı	Hardware power-down control input, active low	
SV	46	ı	CCD signal level sample clock input	
TPM	34	0	Mux'ed test output: PGA noninverting output or inverted PGA clock	
TPP	35	0	Mux'ed test output: PGA inverting output or inverted CDS clock	
VSS	42		Silicon substrate, normally connected to analog ground	

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated