- Functionally Equivalent to AMD’s AM29823 and AM29824
- Provide Extra Data Width Necessary for Wider Address/Data Paths or Buses With Parity
- Outputs Have Undershoot-Protection Circuitry
- Power-Up High-Impedance State
- Buffered Control Inputs to Reduce dc Loading Effects
- Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (NT) and Ceramic (JT) 300-mil DIPs

description

These 9 -bit flip-flops feature 3 -state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. These devices are particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers, parity bus interfacing, and working registers.
With the clock-enable ($\overline{\mathrm{CLKEN}}$) input low, the nine D-type edge-triggered flip-flops enter data on the low-to-high transitions of the clock (CLK) input. Taking CLKEN high disables the clock buffer, latching the outputs. The SN54AS823A and SN74AS823A have noninverting data (D) inputs and the SN74AS824A has inverting ($\overline{\mathrm{D}}$) inputs. Taking the clear ($\overline{\mathrm{CLR}}$) input low causes the nine Q outputs to go low independently of the clock.

A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the nine outputs in either a normal logic state (high or low logic level) or the highimpedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.
$\overline{\mathrm{OE}}$ does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
The SN54AS823A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74AS823A and SN74AS824A are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN54AS823A... FK PACKAGE

 (TOP VIEW)

SN74AS824A ... DW OR NT PACKAGE (TOP VIEW)

$\overline{\mathrm{OE}} \mathrm{C}_{1}$	24	V_{CC}
1吅2	23] $1 Q$
$2 \overline{\mathrm{D}} 3$	22	2Q
$3 \overline{\mathrm{D}}$-4	21	$3 Q$
4 $\overline{\mathrm{D}}$ [5	20	4Q
5 $\overline{\mathrm{D}} 6$	19	5Q
6可 7	18	6Q
7D ${ }^{\text {d }}$	17	7Q
8 $\overline{\mathrm{D}}$ [9	16	8 Q
9D-10	15	9Q
CLR [11	14	CLKEN
GND [12	13	CLK

NC - No internal connection

SN54AS823A, SN74AS823A, SN74AS824A

9-BIT BUS-INTERFACE FLIP-FLOPS

WITH 3-STATE OUTPUTS
SDAS231A - JUNE 1984 - REVISED AUGUST 1995

Function Tables

SN54AS823A, SN74AS823A
(each flip-flop)

INPUTS					OUTPUT Q
$\overline{\mathrm{OE}}$	$\overline{\text { CLR }}$	$\overline{\text { CLKEN }}$	CLK	D	
L	L	X	X	X	L
L	H	L	\uparrow	H	H
L	H	L	\uparrow	L	L
L	H	H	X	X	Q_{0}
H	X	X	X	X	Z

SN74AS824A
(each flip-flop)

INPUTS					OUTPUT
$\mathbf{~} \overline{\mathbf{O E}}$	$\overline{\text { CLR }}$	$\overline{\text { CLKEN }}$	CLK	$\overline{\mathbf{D}}$	Q
L	L	X	X	X	L
L	H	L	\uparrow	H	L
L	H	L	\uparrow	L	H
L	H	H	X	X	Q_{0}
H	X	X	X	X	Z

logic symbols \dagger

† These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DW, JT, and NT packages.

logic diagrams (positive logic)

Pin numbers shown are for the DW, JT, and NT packages.

SN54AS823A, SN74AS823A, SN74AS824A 9-BIT BUS-INTERFACE FLIP-FLOPS
 WITH 3-STATE OUTPUTS
 SDAS231A - JUNE 1984 - REVISED AUGUST 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage, V_{CC} 7 V
Input voltage, V_{I} 7 V
Voltage applied to a disabled 3-state output 5.5 V
Operating free-air temperature range, T_{A} : SN54AS823A $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

			SN54AS823A			SN74AS823A SN74AS824A			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High-level input voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8			0.8	V
${ }^{\mathrm{I}} \mathrm{OH}$	High-level output current				-24			-24	mA
${ }^{\text {IOL }}$	Low-level output current				32			48	mA
	Pulse duration	$\overline{\text { CLR }}$ low	7.5			6.5			ก
'W	Pulse duration	CLK high or low	9.5			8			ns
		$\overline{\text { CLR }}$ high	8			8			
$\mathrm{t}_{\text {su }}{ }^{*}$	Setup time before CLK \uparrow	Data	7			6			ns
		$\overline{\text { CLKEN }}$ high or low	8.5			7.5			
th^{*}	Hold time after CLK \uparrow	$\overline{\text { CLKEN }}$ low	0			0			ns
T_{A}	Operating free-air temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

* On products compliant to MIL-STD-883, Class B, this parameter is based on characterization data but is not production tested.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54AS823A			SN74AS823A SN74AS824A			UNIT		
		MIN	TYP†	MAX	MIN	TYP \dagger	MAX					
V_{IK}				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$			-1.2			-1.2	V
V OH		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ,	$\mathrm{IOH}=-2 \mathrm{~mA}$	$\mathrm{V}_{\text {CC }}-2$			$\mathrm{V}_{\mathrm{CC}}-2$			V		
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I}^{\mathrm{OH}}=-15 \mathrm{~mA}$	2.4	3.2		2.4	3.2				
		$\mathrm{IOH}=-24 \mathrm{~mA}$	2			2						
$\mathrm{V}_{\text {OL }}$			$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	$\mathrm{IOL}=32 \mathrm{~mA}$		0.3	0.5				V	
		$\mathrm{OL}=48 \mathrm{~mA}$						0.35	0.5			
IOZH		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50			50	$\mu \mathrm{A}$		
IOZL		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-50			-50	$\mu \mathrm{A}$		
11		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1			0.1	mA		
IIH		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
ILL		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.5			-0.5	mA		
10^{\ddagger}		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$	-30		-112	-30		-112	mA		
${ }^{\text {ICC }}$	SN54AS823A, SN74AS823A	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$	Outputs high		49	80		49	80	mA		
			Outputs low		61	100		61	100			
			Outputs disabled		64	103		64	103			
	SN74AS824A	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$	Outputs high		49	80		49	80			
			Outputs low		61	100		61	100			
			Outputs disabled		64	103		64	103			

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.
switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to MAX§ } \end{aligned}$				UNIT
			SN54AS823A		$\begin{aligned} & \text { SN74AS823A } \\ & \text { SN74AS824A } \end{aligned}$		
			MIN	MAX	MIN	MAX	
tPLH	CLK	Any Q	3.5	9	3.5	7.5	ns
tPHL			3.5	14	3.5	13	
tPHL	$\overline{\mathrm{CLR}}$	Any Q	3.5	16.5	3.5	15.5	ns
tPZH	$\overline{\mathrm{OE}}$	Any Q	4	12	4	11	ns
tPZL			4	13	4	12	
tPHZ	$\overline{\mathrm{OE}}$	Any Q	1	10	1	8	ns
tPLZ			1	10	1.5	8	

[^0]
PARAMETER MEASUREMENT INFORMATION
 SERIES 54ALS/74ALS AND 54AS/74AS DEVICES

Voltage waveforms SETUP AND HOLD TIMES

voltage waveforms
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATIONS

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. When measuring propagation delay items of 3 -state outputs, switch S1 is open.
D. All input pulses have the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2 \mathrm{~ns}$, duty cycle $=50 \%$.
E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

[^0]: § For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

