SN54ALVTH32374, SN74ALVTH32374 2.5-V/3.3-V 32-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS
 SCES280 - SEPTEMBER 1999

- State-of-the-Art Advanced BiCMOS Technology (ABT) Widebus ${ }^{\text {TM }}$ Design for 2.5-V and 3.3-V Operation and Low Static Power Dissipation
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 2.3-V to $3.6-\mathrm{V} \mathrm{V}_{\mathrm{Cc}}$)
- Typical $\mathrm{V}_{\text {OLP }}$ (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High Drive ($-24 / 24 \mathrm{~mA}$ at $2.5-\mathrm{V}_{\mathrm{Cc}}$ and $-32 / 64 \mathrm{~mA}$ at $3.3-\mathrm{V} \mathrm{V}_{\mathrm{Cc}}$)
- Ioff and Power-Up 3-State Support Hot Insertion
- Use Bus Hold on Data Inputs in Place of External Pullup/Pulldown Resistors to Prevent the Bus From Floating

NOTE: For tape and reel order entry:
The GKER package is abbreviated to KR.

- Auto3-State Eliminates Bus Current Loading When Output Exceeds Vcc + 0.5 V

- Flow-Through Architecture Facilitates Printed Circuit Board Layout
- Distributed V_{Cc} and GND Pin Configuration Minimizes High-Speed Switching Noise
- ESD Protection Exceeds JESD-22
- 2000-V Human-Body Model
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101) (A114-A)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- Packaged in Plastic Fine-Pitch Ball Grid Array Package

description

The 'ALVTH32374 devices are 32-bit edge-triggered D-type flip-flops with 3-state outputs designed for 2.5-V or $3.3-\mathrm{V}$) V_{CC} operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment. These devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

These devices can be used as four 8-bit flip-flops, two 16-bit flip-flops, or one 32-bit flip-flop. On the positive transition of the clock (CLK), the Q outputs of the flip-flops take on the logic levels set up at the data (D) inputs.

A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.
$\overline{\mathrm{OE}}$ does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
When V_{CC} is between 0 and 1.2 V , the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V , $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
These devices are fully specified for hot-insertion applications using $\mathrm{I}_{\text {off }}$ and power-up 3-state. The $\mathrm{l}_{\text {off }}$ circuitry disables the outputs, preventing damaging current backflow through the device when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN54ALVTH32374 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ALVTH32374 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated.

FUNCTION TABLE
(each flip-flop)

INPUTS			OUTPUT
$\overline{\mathrm{OE}}$	CLK	\mathbf{D}	\mathbf{Q}
L	\uparrow	H	H
L	\uparrow	L	L
L	H or L	X	Q_{0}
H	X	X	Z

terminal assignments

	1	2	3	4	5	6
A	1Q2	1Q1	$1 \overline{O E}$	1CLK	1D1	1D2
B	1Q4	1Q3	GND	GND	1D3	1D4
C	1Q6	1Q5	$1 \mathrm{~V}_{\mathrm{CC}}$	$1 \mathrm{~V}_{\mathrm{CC}}$	1D5	1D6
D	1Q8	1Q7	GND	GND	1D7	1D8
E	2Q2	2Q1	GND	GND	2D1	2D2
F	2Q4	2Q3	$1 \mathrm{~V}_{\mathrm{CC}}$	$1 \mathrm{~V}_{\mathrm{CC}}$	2D3	2D4
G	2Q6	2Q5	GND	GND	2D5	2D6
H	2Q7	2Q8	$2 \overline{O E}$	2CLK	2D8	2D7
J	3Q2	3Q1	$3 \overline{O E}$	3CLK	3D1	3D2
K	3Q4	3Q3	GND	GND	3D3	3D4
L	3Q6	3Q5	$2 \mathrm{~V}_{\mathrm{CC}}$	$2 \mathrm{~V}_{\text {CC }}$	3D5	3D6
M	3Q8	3Q7	GND	GND	3D7	3D8
N	4Q2	4Q1	GND	GND	4D1	4D2
P	4Q4	4Q3	$2 \mathrm{~V}_{\text {CC }}$	$2 \mathrm{~V}_{C C}$	4D3	4D4
R	4Q6	4Q5	GND	GND	4D5	4D6
T	4Q7	4Q8	$4 \overline{\mathrm{OE}}$	4CLK	4D8	4D7

SN54ALVTH32374, SN74ALVTH32374 2.5-V/3.3-V 32-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS

logic diagram (positive logic)

NOTE A: $1 \mathrm{~V}_{\mathrm{CC}}$ is associated with these channels.

To Seven Other Channels

NOTE B: $2 \mathrm{~V}_{\mathrm{CC}}$ is associated with these channels.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC}. 0.5 V . to 4.6 V
Input voltage range, V_{I} (see Note 1) 0.5 V to 7 V
Voltage range applied to any output in the high-impedance or power-off state, V_{O}
(see Note 1)
-0.5 V to 7 V
Voltage range applied to any output in the high state, V_{O} (see Note 1) 0.5 V to 7 V
Output current in the low state, I_{O} : SN54ALVTH32374 96 mA
SN74ALVTH32374 . 128 mA
Output current in the high state, I_{O} : SN54ALVTH32374 . -48 mA
SN74ALVTH32374 ... -64 mA
Input clamp current, $I_{I_{K}}\left(\mathrm{~V}_{\mathrm{I}}<0\right)$. 50 mA

Package thermal impedance, $\theta_{J A}$ (see Note 2) . $40^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51.

SCES280 - SEPTEMBER 1999
recommended operating conditions, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ (see Note 3)

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
recommended operating conditions, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (see Note 3)

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN54ALVTH32374, SN74ALVTH32374 2.5-V/3.3-V 32-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS

electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The bus-hold circuit can sink at least the minimum low sustaining current at $V_{I L}$ max. IBHL should be measured after lowering $V_{I N}$ to $G N D$ and then raising it to $\mathrm{V}_{\text {IL }}$ max.
§ The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I I_{BH} should be measured after raising $\mathrm{V}_{I N}$ to V_{CC} and then lowering it to V_{IH} min.
II An external driver must source at least IBHLO to switch this node from low to high.
\# An external driver must sink at least I_{BHHO} to switch this node from high to low.
\| Current into an output in the high state when $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$
\star High-impedance state during power up or power down

SN54ALVTH32374, SN74ALVTH32374

2.5-V/3.3-V 32-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS

WITH 3-STATE OUTPUTS

SCES280 - SEPTEMBER 1999
electrical characteristics over recommended operating free-air temperature range,
$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The bus-hold circuit can sink at least the minimum low sustaining current at $V_{I L}$ max. IBHL should be measured after lowering $V_{I N}$ to $G N D$ and then raising it to $\mathrm{V}_{\text {IL }}$ max.
\S The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.
II An external driver must source at least IBHLO to switch this node from low to high.
\# An external driver must sink at least l_{BHHO} to switch this node from high to low.
II Current into an output in the high state when $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$
\star High-impedance state during power up or power down
\square This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN54ALVTH32374, SN74ALVTH32374 2.5-V/3.3-V 32-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS

SCES280 - SEPTEMBER 1999
timing requirements over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

timing requirements over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (unless otherwise noted) (see Figure 2)

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$, $\mathrm{V}_{\mathrm{C}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54ALVTH32374		SN74ALVTH32374		UNIT
			MIN	MAX	MIN	MAX	
$f_{\text {max }}$			150	S	150		MHz
tPLH	CLK	Q	1.4	3.9	1.5	3.8	ns
tPHL			1.4	3.9	1.5	3.8	
tpZH	$\overline{\mathrm{OE}}$	Q		4.2	1	4.1	ns
tPZL			1	3.8	1	3.7	
tPHZ	$\overline{\mathrm{OE}}$	Q	${ }^{1} .7$	4.3	1.8	4.2	ns
tPLZ			Q 1	3.5	1	3.4	

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, $\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54ALVTH32374		SN74ALVTH32374		UNIT
			MIN	MAX	MIN	MAX	
$f_{\text {max }}$			250	+	250		MHz
tPLH	CLK	Q	1	3.4	1	3.2	ns
tPHL			1	3.3	1	3.2	
tPZH	$\overline{\mathrm{OE}}$	Q	1	3.9	1	3.8	ns
tPZL			1	3.4	1	3.3	
tPHZ	$\overline{\mathrm{OE}}$	Q	-1	4.7	1	4.6	ns
tPLZ			Q 1	4.4	1	4.2	

PARAMETER MEASUREMENT INFORMATION

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$

TEST	S1
${ }^{\text {tpLH }}$ /tPHL	Open
tplz/tpzL	$2 \times V_{C C}$
tphz/tpzh	GND

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS
PULSE DURATION

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

NOTES:
A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

$$
V_{C C}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}
$$

TEST	S1
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} / \mathrm{t}_{\mathrm{PH}} \\ & \mathrm{t}^{2} \mathrm{PLZ} / \mathrm{t} \mathrm{PZL} \\ & \mathrm{t}_{\mathrm{PHZ}} / \mathrm{t} \mathrm{PZH} \end{aligned}$	Open 6 V GND

LOAD CIRCUIT

NOTES:
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TIPRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

