SN54HCT574, SN74HCT574 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS SCLS177C – MARCH 1984 – REVISED MAY 1997

- Inputs Are TTL-Voltage Compatible
- High-Current 3-State Noninverting Outputs Drive Bus Lines Directly or up to 15 LSTTL Loads
- Bus-Structured Pinout
- Package Options Include Plastic Small-Outline (DW), Thin Shrink Small-Outline (PW), and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description

These octal edge-triggered D-type flip-flops feature 3-state outputs designed specifically for bus driving. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops enter data on the low-to-high transition of the clock (CLK) input.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

SN54HCT574 J OR W PACKAGE
SN74HCT574 DW, N, OR PW PACKAGE
(TOP VIEW)

SN54HCT574 . . . FK PACKAGE (TOP VIEW)

	2D 2	
3D	3 2 1 20 19 4 18 2	2Q
3D 4D 5D 6D 7D] 4 ¹ 18 2] 5 17 3	ßQ
5D	Π 6 16 Π 4	Q
6D		5Q
7D	8 14 🖸 6	6Q
I	BND BND BND BND BND BND BND BND BND BND	

OE does not affect the internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

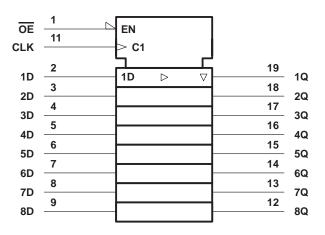
The SN54HCT574 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74HCT574 is characterized for operation from -40° C to 85° C.

	(each flip-flop)											
	INPUTS		OUTPUT									
OE	CLK	D	Q									
L	\uparrow	Н	Н									
L	\uparrow	L	L									
L	H or L	Х	Q ₀									
н	Х	Х	Z									

FUNCTION TABLE

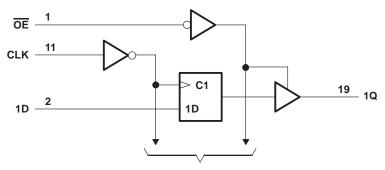
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 1997, Texas Instruments Incorporated

SN54HCT574, SN74HCT574 **OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS** WITH 3-STATE OUTPUTS


SCLS177C - MARCH 1984 - REVISED MAY 1997

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range[‡]

Input clamp current, I_{IK} (V _I < 0 or V _I > V _{CC}) (see	-0.5 V to 7 e Note 1)	۱A
Output clamp current, I_{OK} (V _O < 0 or V _O > V _{CC})) (see Note 1) ±20 m	۱A
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±35 m	۱A
Continuous current through V _{CC} or GND	±70 m	۱A
	DW package	
	N package 67°C/	W
	PW package 128°C/	W
Storage temperature range, T _{stg}		°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

SN54HCT574, SN74HCT574 **OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS** WITH 3-STATE OUTPUTS

SCLS177C - MARCH 1984 - REVISED MAY 1997

recommended operating conditions

			SN	54HCT574	SI	UNIT		
			MIN	NOM MA	X MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5 5	5 4.5	5	5.5	V
VIH	High-level input voltage	V_{CC} = 4.5 V to 5.5 V	2	N.	2			V
VIL	Low-level input voltage	$V_{CC} = 4.5 V \text{ to } 5.5 V$	0	Q 0	8 0		0.8	V
VI	Input voltage		0	S Vc	C 0		VCC	V
Vo	Output voltage		0 <	Vc	C 0		VCC	V
tt	Input transition (rise and fall) time		0	50	0 0		500	ns
ТА	Operating free-air temperature		-55	12	5 –40		85	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		Vee	Т	A = 25°C	;	SN54H0	CT574	SN74H	CT574	UNIT
PARAMETER	TEST CO	NDITION5	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
Vou	$V_{I} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -20 μA	4.5 V	4.4	4.499		4.4		4.4		V
Voh	VI = VIH OL VIL	I _{OH} = -6 mA	4.5 V	3.98	4.3		3.7		3.84		v
Ve	$V_{I} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 20 μA	4.5 V		0.001	0.1		0.1		0.1	V
VOL		I _{OL} = 6 mA	4.5 V		0.17	0.26		0.4		0.33	v
li	VI = VCC or 0		5.5 V		±0.1	±100	40	±1000		±1000	nA
IOZ	AO = ACC or 0		5.5 V		±0.01	±0.5	43	±10		±5	μΑ
ICC	$V_I = V_{CC} \text{ or } 0,$	IO = 0	5.5 V			8	nc	160		80	μΑ
∆ICC‡	One input at 0.5 V of Other inputs at 0 or		5.5 V		1.4	2.4	Odda	3		2.9	mA
Ci			4.5 V to 5.5 V		3	10		10		10	pF

[†] This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

		Vee	T _A = 1	25°C	SN54H	CT574	SN74H	CT574	UNIT
		Vcc	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
f	Clock frequency	4.5 V	0	30	0	20	0	24	MHz
fclock	Clock frequency	5.5 V	0	33	0	22	0	27	IVITIZ
•	Pulse duration, CLK high or low	4.5 V	16		24	EN	20		00
tw	Fuise duration, CER high of low	5.5 V	14		22 🗸		18		ns
	Setup time, data before CLK↑	4.5 V	20		30		25		20
^t su	Setup time, data before CEKT	5.5 V	17		27		23		ns
	Hold time, data after CLK↑	4.5 V	5		x 5		5		-
th		5.5 V	5		5		5		ns

SN54HCT574, SN74HCT574 **OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS** WITH 3-STATE OUTPUTS SCLS177C - MARCH 1984 - REVISED MAY 1997

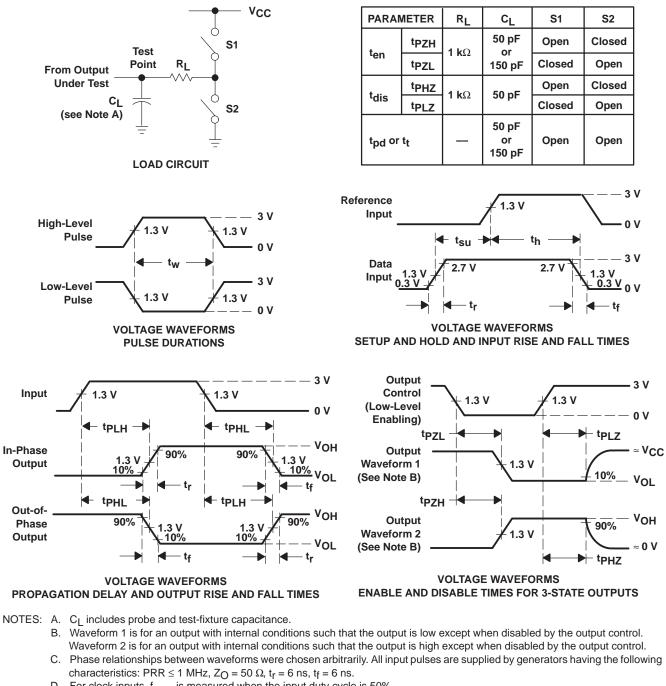
switching characteristics over recommended operating free-air temperature range, CL = 50 pF (unless otherwise noted) (see Figure 1)

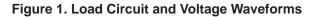
PARAMETER	FROM	то	Vaa	Τ,	λ = 25°C	;	SN54H	CT574	SN74H	CT574	UNIT		
PARAMETER	(INPUT)	(OUTPUT)	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT		
f			4.5 V	30	36		20		24		MHz		
fmax			5.5 V	33	40		22		27				
.	CLK	Amy ()	4.5 V		30	36		54		45	ns		
^t pd	OLK	Any Q	Ally Q	Ally Q	5.5 V		25	32		48		41	115
	OE	Amy O	4.5 V		26	30		45		38	-		
ten	OE	Any Q	5.5 V		23	27	C)	41		34	ns		
+	t _{dis} DE	Any O	4.5 V		23	30	201	45		38	ns		
^t dis		Any Q	5.5 V		22	27	A.	41		34	115		
+.		Anv 0	4.5 V		10	12		18		15	200		
tt		Any Q	5.5 V		9	11		16		14	ns		

switching characteristics over recommended operating free-air temperature range, $C_L = 150 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	Vee	Тį	Δ = 25°C	;	SN54H	CT574	SN74H	CT574	UNIT
PARAMETER	(INPUT) (OUTPUT)	(OUTPUT)	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
4			4.5 V	30	36		20	_	24		MHz
fmax			5.5 V	33	40		22	ĬEV,	27		IVITIZ
+ .	CLK	Any Q	4.5 V		40	53		2 80		66	ns
^t pd	OLK	Ally Q	5.5 V		35	47		71		60	115
4	OE	Amy O	4.5 V		34	47)C.	71		59	-
^t en	en OE Any C	Any Q	5.5 V		29	39	QC 1	94		78	ns
.		Any O	4.5 V		18	42	40	63		53	-
tt		Any Q	5.5 V		16	38		57		48	ns

operating characteristics, $T_A = 25^{\circ}C$


	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance per flip-flop	No load	93	pF


SN54HCT574, SN74HCT574 **OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS** WITH 3-STATE OUTPUTS

SCLS177C - MARCH 1984 - REVISED MAY 1997

PARAMETER MEASUREMENT INFORMATION

- D. For clock inputs, fmax is measured when the input duty cycle is 50%.
- E. The outputs are measured one at a time with one input transition per measurement.
- F. tpl 7 and tpH7 are the same as tdis.
- G. t_{PZL} and t_{PZH} are the same as t_{en} .
- H. tPLH and tPHL are the same as tpd.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated