- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art Advanced BiCMOS

Technology (ABT) Design for 3.3-V Operation and Low Static-Power Dissipation

- Output Ports Have Equivalent $22-\Omega$ Series Resistors, So No External Resistors Are Required
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With $3.3-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ )
- Support Unregulated Battery Operation Down to 2.7 V
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- $\mathrm{I}_{\text {off }}$ and Power-Up 3-State Support Hot Insertion
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Distributed $\mathrm{V}_{\mathrm{CC}}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Latch-Up Performance Exceeds 500 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model ( $\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$ )
- Package Options Include Plastic Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings


## description

The 'LVTH162374 devices are 16-bit edge-triggered D-type flip-flops with 3 -state outputs designed for low-voltage (3.3-V) $\mathrm{V}_{\mathrm{CC}}$ operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.
These devices can be used as two 8-bit flip-flops or one 16-bit flip-flop. On the positive transition of the clock (CLK), the Q outputs of the flip-flop take on the logic levels set up at the D inputs.

## description (continued)

A buffered output-enable ( $\overline{\mathrm{OE}}$ ) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.
$\overline{\mathrm{OE}}$ does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The outputs, which are designed to source or sink up to 12 mA , include equivalent $22-\Omega$ series resistors to reduce overshoot and undershoot.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
When $\mathrm{V}_{\mathrm{CC}}$ is between 0 and 1.5 V , the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above $1.5 \mathrm{~V}, \overline{\mathrm{OE}}$ should be tied to $\mathrm{V}_{\mathrm{CC}}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
These devices are fully specified for hot-insertion applications using $I_{\text {off }}$ and power-up 3-state. The $I_{\text {off }}$ circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

The SN54LVTH162374 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVTH162374 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

| FUNCTION TABLE (each flip-flop) |  |  |  |
| :---: | :---: | :---: | :---: |
| INPUTS |  |  | OUTPUT |
| $\overline{\mathrm{OE}}$ | CLK | D | Q |
| L | $\uparrow$ | H | H |
| L | $\uparrow$ | L | L |
| L | H or L | X | $Q_{0}$ |
| H | X | X | Z |

logic symbol $\dagger$

$\dagger$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)


To Seven Other Channels


To Seven Other Channels

## absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$


recommended operating conditions (see Note 4)


NOTE 4: All unused control inputs of the device must be held at $\mathrm{V}_{\mathrm{CC}}$ or GND to ensure proper device operation. Refer to the Tl application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

## SN54LVTH162374, SN74LVTH162374 3.3-V ABT 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS |  | SN54LVTH162374 |  | SN74LVTH162374 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP $\dagger$ MAX | MIN | TYP $\dagger$ MAX |  |
| $\mathrm{V}_{\text {IK }}$ |  |  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$, | $\mathrm{I}=-18 \mathrm{~mA}$ |  | -1.2 |  | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ |  | $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$, | $\mathrm{I} \mathrm{OH}=-12 \mathrm{~mA}$ | 2 |  | 2 |  | V |
| VOL |  | $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$, | $\mathrm{l} \mathrm{OL}=12 \mathrm{~mA}$ |  | 0.8 |  | 0.8 | V |
| 1 |  | $\mathrm{V}_{\mathrm{CC}}=0$ or 3.6 V , | $\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ |  | 10 |  | 10 | $\mu \mathrm{A}$ |
|  | Control inputs | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND |  | $\pm 1$ |  | $\pm 1$ |  |
|  | Data inputs | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ | $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ |  | 1 |  | 1 |  |
|  |  |  | $\mathrm{V}_{1}=0$ |  | -5 |  | -5 |  |
| ${ }^{\text {off }}$ |  | $\mathrm{V}_{\mathrm{CC}}=0$, | $\mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=0$ to 4.5 V |  |  |  | $\pm 100$ | $\mu \mathrm{A}$ |
| 1 (hold) | Data inputs | $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ | $\mathrm{V}_{1}=0.8 \mathrm{~V}$ | 75 |  | 75 |  | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}$ | -75 |  | -75 |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} \ddagger$, | $\mathrm{V}_{\mathrm{I}}=0$ to 3.6 V |  |  |  | $\begin{array}{r} 500 \\ -750 \end{array}$ |  |
| IOZH |  | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ |  | 5 |  | 5 | $\mu \mathrm{A}$ |
| IOZL |  | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ |  | -5 |  | -5 | $\mu \mathrm{A}$ |
| IozPU |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=0 \text { to } 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 3 \mathrm{~V}, \\ & \mathrm{OE}=\text { don't care } \end{aligned}$ |  |  | $\pm 100^{*}$ |  | $\pm 100$ | $\mu \mathrm{A}$ |
| IozPD |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V} \text { to } 0, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 3 \mathrm{~V} \text {, } \\ & \mathrm{OE}=\text { don't care } \end{aligned}$ |  |  | $\pm 100^{*}$ |  | $\pm 100$ | $\mu \mathrm{A}$ |
| ICC |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$ | Outputs high |  | 0.19 |  | 0.19 | mA |
|  |  |  | Outputs low |  | 5 |  | 5 |  |
|  |  |  | Outputs disabled |  | 0.19 |  | 0.19 |  |
| ${ }^{\text {I C C }}$ § |  | $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V , One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 0.2 |  | 0.2 | mA |
| $\mathrm{C}_{\mathrm{i}}$ |  | $\mathrm{V}_{\mathrm{I}}=3 \mathrm{~V}$ or 0 |  |  | 3 |  | 3 | pF |
| $\mathrm{C}_{0}$ |  | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 |  |  | 9 |  | 9 | pF |

* On products compliant to MIL-PRF-38535, this parameter is not production tested.
$\dagger$ All typical values are at $\mathrm{V} C \mathrm{C}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\ddagger$ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.
$\S$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)



## 3.3-V ABT 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS

## WITH 3-STATE OUTPUTS

SCBS262I - JULY 1993 - REVISED APRIL 1999
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM (INPUT) | TO (OUTPUT) | SN54LVTH162374 |  |  |  | SN74LVTH162374 |  |  |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$ |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ |  | $\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$ |  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ |  |  |
|  |  |  | MIN | MAX | MIN | MAX | MIN | TYP† | MAX | MIN | MAX |  |
| $f_{\text {max }}$ |  |  | 160 |  | 160 |  | 160 |  |  | 160 |  | MHz |
| tpLH | CLK | Q | 1.4 | 6.6 |  | 7.4 | 2 | 3.4 | 5.3 |  | 6.2 | ns |
| tPHL |  |  | 1.4 | 5.8 |  | 6 | 2.2 | 3.3 | 4.9 |  | 5.1 |  |
| tPZH | $\overline{\mathrm{OE}}$ | Q | 1 | 6.6 |  | 7.4 | 1.8 | 3.5 | 5.6 |  | 6.9 | ns |
| tPZL |  |  | 1.4 | 6 |  | 6.8 | 1.8 | 3.5 | 4.9 |  | 6 |  |
| tPHZ | $\overline{O E}$ | Q | 1 | 6.6 |  | 7.4 | 2.4 | 4.2 | 5.4 |  | 5.7 | ns |
| tPLZ |  |  | 1.4 | 6 |  | 6 | 2 | 3.8 | 5 |  | 5.1 |  |
| $\mathrm{t}_{\text {sk }}(0)$ |  |  |  |  |  |  |  |  | 0.5 |  |  | ns |

$\dagger$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## PARAMETER MEASUREMENT INFORMATION



LOAD CIRCUIT


VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS


VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. $\mathrm{C}_{\mathrm{L}}$ includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

## IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent Tl deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

