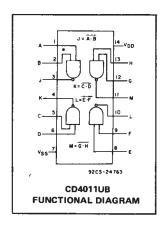


CMOS Quad 2-Input NAND Gate

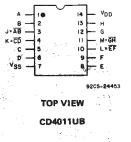

High-Voltage Types (20-Volt Rating)

CD4011UB quad 2-input NAND gate provides the system designer with direct implementation of the NAND function and supplements the existing family of CMOS gates.

The CD4011UB types are supplied in 14lead hermetic dual-in-line ceramic packages (D and F suffixes), 14-lead dual-inline plastic packages (E suffix), and in chip form (H suffix).

Features:

- Propagation delay time = 30 ns (typ). at $C_L = 50 pF$, $V_{DD} = 10 V$
- Standardized symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 μ A at 18 V over full package temperature range; 100 nA at 18 V and 25°C
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"



CD4011UB Types

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to VSS Terminal)	0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS	0.5V to V _{DD} +0.5V
DC INPUT CURRENT, ANY ONE INPUT	±10mA
DC INPUT CURRENT, ANY ONE INPUT	va je vi
For T _A = -55°C to +100°C	
For T _A = +100°C to +125°C	Derate Linearity at 12mW/°C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	· 사람 : 10 : 10 : 10 : 10 : 10 : 10 : 10 : 1
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package	ge Types) 100mW
OPERATING-TEMPERATURE RANGE (TA)	55°C to +125°C
STORAGE TEMPERATURE RANGE (T _{sto})	
LEAD TEMPERATURE (DURING SOLDERING):	사람 기계
At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s	max+265 ^d ℃

TERMINAL ASSIGNMENT

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.

CHARACTERISTIC	MIN.	MAX.	UNITS
Supply Voltage Range (For TA= Full Package Temperature Range)	3	18	v

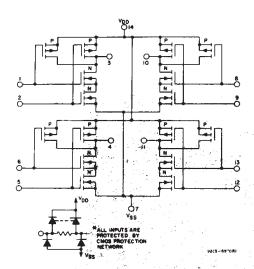


Fig. 1 - Schematic diagram for type CD4011UB.

CD4011UB Types

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER-	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)						I I I I I I I I I I I I I I I I I I I	
ISTIC	VQ	V _{IN} (V)	V _{DD} (V)	+25					UNITS		
	(v)			-55	-40	+85	+125	Min.	Тур.	Max.	
Quiescent Device	_	0,5	5	0.25	0.25	7.5	7.5	-	0.01	0.25	
Current,	-	0,10	10	0.5	0.5	15	15	-	0.01	0.5	
IDD Max.	- "	0,15	15	1	1	30	30		0.01	1	μΑ
	+	0,20	20	5	5	150	150	-	0.02	5	
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	-	
(Sink) Current	0,5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	-	
IOL Min.	1.5	0,15	15	4.2	4	2.8	2,4	3.4	6.8		
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	-	mA
(Source)	2,5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	-	
Current, IOH Min.	9.5	0,10	10	-1.6	-1.5	-1.1	0.9	-1.3	-2.6	-	
TOH WIIII.	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-	
Output Voltage:	_	0,5	5	0.05				_	0	0.05	٧
Low-Level, VOL Max.		0,10	10	0.05				-	0	0.05	
AOL way.		0,15	15	0.05				-	0	0.05	
Output Voltage:	_	0,5	5	4.95				4.95	5	-	
High-Level,	_	0,10	10		9	.95		9.95	10	-	
VOH Min.	-	0,15	15	14.95				14.95	15	-	
Input Low	4.5	-	5			1			_	1	
Voltage, VIL Max.	9	1	10	2				_	-	2	
	13.5	-	15	2.5				_		2.5	_v
Input High Voltage, VIH Min.	0.5,4.5	_	5	4			4		_	V	
	1,9	-	10	8				8			.
	1.5,13.5	-	15	12.5				12.5		_	
Input Current I _{IN} Max.		0,18	18	±0.1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μА

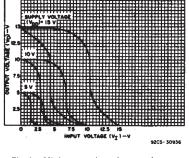


Fig. 2 - Minimum and maximum voltage transfer characteristics.

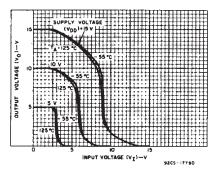
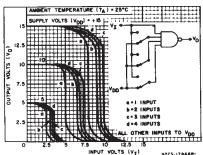
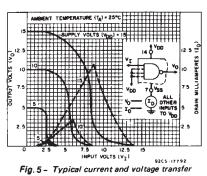



Fig. 3 - Typical voltage transfer characteristics as a function of temperature.



Flg. 4 - Typical multiple input switching transfer characteristics for CD4012UB.

DYNAMIC ELECTRICAL CHARACTERISTICS

At T_A = 25°C, Input $t_{\rm f}$, $t_{\rm f}$ = 20 ns, and C_L = 50 pF, R_L = 200k Ω

	TEST CONDI	TIONS	LIM		
CHARACTERISTIC		V _{DD} VOLTS	TYP.	MAX	UNITS
Propagation Delay Time, ^t PHL ^{, t} PLH	L	5 10 15	60 30 25	120 60 50	ns
Transition Time, ^t THL ^{, t} TLH		5 10 15	100 50 40	200 100 80	ns
Input Capacitance, C _{IN}	Any Input		10	15	pF

characteristics.

CD4011UB Types

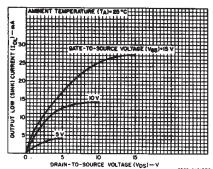


Fig. 6 - Typical output low (sink) current characteristics.

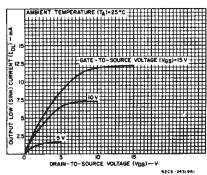


Fig. 7 - Minimum output low (sink) current characteristics.

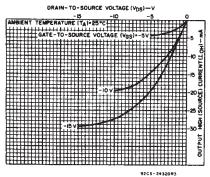


Fig. 8 - Typical output high (source) current characteristics.

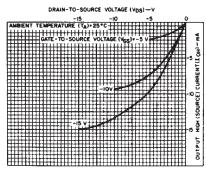


Fig. 9 - Minimum output high (source) current characteristics.

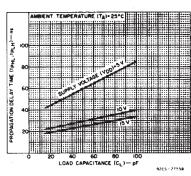


Fig. 10 - Typical propagation delay time vs. load capacitance.

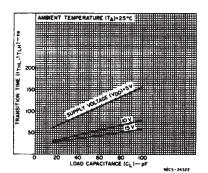


Fig. 11 - Typical transition time vs. load capacitance.

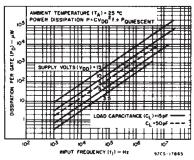
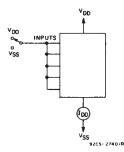
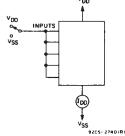
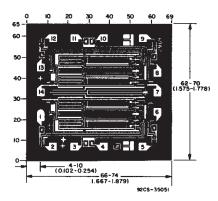


Fig. 12 - Typical power dissipation vs. frequency characteristics.


Fig. 13 - Quiescent device current test circuit.

MEASURE INPUTS
SEQUENTIALLY,
TO BOTH VDD AND VSS'
CONNECT ALL UNUSED
INPUTS TO EITHER 9205-27402

Fig.15 - Input current test circuit.

Chip Dimensions and Pad Layout

CD4011UBH

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated