SCBS223E - OCTOBER 1992 - REVISED MAY 1997

- Members of the Texas Instruments Widebus™ Family
- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Impedance State During Power Up and Power Down
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OL})
- Package Options Include Plastic Thin Shrink Small-Outline (DGG), 300-mil Shrink Small-Outline (DL) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

The 'ABT16843 18-bit bus-interface D-type latches are designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The 'ABT16843 can be used as two 9-bit latches or one 18-bit latch. The 18 latches are transparent D-type latches. The device provides true data at its outputs.

A buffered output-enable (\overline{OE}) input can be used to place the nine outputs in either a normal logic state (high or low logic levels) or a high-impedance state. The outputs are in the high-impedance state during power up and power down. The outputs remain in the high-impedance state while the device is powered down. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

SN54ABT16843 . . . WD PACKAGE SN74ABT16843 . . . DGG OR DL PACKAGE (TOP VIEW)

	г	U		
1CLR	1		56] 1LE
10E	2		55	1PRE
1Q1 [3		54] 1D1
GND [4		53	GND
1Q2 [5		52] 1D2
1Q3 [6		51] 1D3
v _{cc} [7		50	₽v _{cc}
1Q4 L	8		49	D4 1D4
1Q5 [9		48	D5 1D5
1Q6 [10		47] 1D6
GND [11		46	GND
1Q7 [12		45	D7
1Q8 [13		44] 1D8
1Q9 [14		43	D 1D9
2Q1 [15		42	D 2D1
2Q2 [16		41	2D2
2Q3 [17		40	2D3
GND [18		39	GND
2Q4 [19		38	D 2D4
2Q5 [20		37	2D5
2Q6 [21		36	2D6
v _{cc} [22		35	□ v _{cc}
2Q7 [23		34	2D7
2Q8 [24		33	2D8
GND [25		32	GND
2Q9	26		31	2 <u>D9</u>
20E	27		30	2PRE
2CLR	28		29] 2LE
	_			1

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

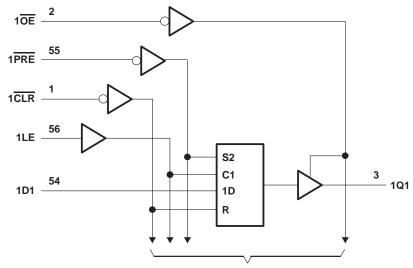
Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

SCBS223E - OCTOBER 1992 - REVISED MAY 1997

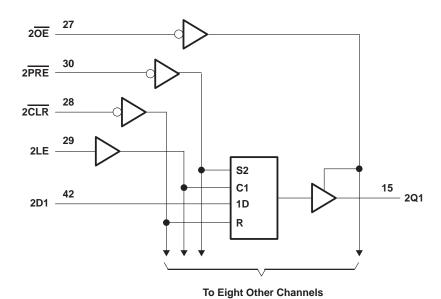
description (continued)

OE does not affect the internal operations of the latch. Previously stored data can be retained or new data can be entered while the outputs are in the high-impedance state.

When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.


The SN54ABT16843 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ABT16843 is characterized for operation from -40° C to 85° C.

FUNCTION TABLE (each 9-bit latch)


		INPUTS			OUTPUT
PRE	CLR	OE	LE	D	Q
L	Х	L	Х	Χ	Н
Н	L	L	X	Χ	L
Н	Н	L	Н	L	L
Н	Н	L	Н	Н	Н
Н	Н	L	L	Χ	Q ₀
Х	Χ	Н	Χ	Χ	Z

SCBS223E - OCTOBER 1992 - REVISED MAY 1997

logic diagram (positive logic)

To Eight Other Channels

SCBS223E - OCTOBER 1992 - REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, V _O	–0.5 V to 5.5 V
Current into any output in the low state, I _O : SN54ABT16843	96 mA
SN74ABT16843	128 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2): DGG package	81°C/W
DL package	74°C/W
Storage temperature range, T _{sto}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

		SN54AB	Γ16843	SN74ABT16843		UNIT	
			MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2	3	2		V
V _{IL}	Low-level input voltage			0.8		0.8	V
VI	Input voltage			Vcc	0	VCC	V
loh	High-level output current		1	-24		-32	mA
loL	Low-level output current		22	48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	0,0	10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		200		μs/V
T _A	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

^{2.} The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

SCBS223E - OCTOBER 1992 - REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST 04	NULTIONS	T,	A = 25°C	;	SN54AB	Γ16843	SN74AB1	Г16843	LINUT	
PARAMETER	l lesi co	ONDITIONS	MIN	TYP [†]	MAX	MIN	MAX	MIN	MAX	UNIT	
VIK	$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.2		-1.2		-1.2	V	
	$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.5			2.5		2.5			
VOH	$V_{CC} = 5 V$,	$I_{OH} = -3 \text{ mA}$	3			3		3			
VOH	V _{CC} = 4.5 V	$I_{OH} = -24 \text{ mA}$	2			2				V	
	VCC = 4.5 V	$I_{OH} = -32 \text{ mA}$	2*					2		1	
V _{OL}	V _{CC} = 4.5 V	I _{OL} = 48 mA			0.55		0.55			V	
VOL	VCC = 4.5 V	I _{OL} = 64 mA			0.55*				0.55	V	
V _{hys}				100						mV	
II	$V_{CC} = 0 \text{ to } 5.5 \text{ V}$ $V_{I} = V_{CC} \text{ or GN}$				±1		±1		±1	μΑ	
lozpu [‡]	$V_{CC} = 0 \text{ to } 2.1 \text{ V}_{O} = 0.5 \text{ V to } 2.7 \text{ V}_{O} = 0.5 \text{ V}_{$	/, 7 V, OE = X			±50		±50		±50	μΑ	
IOZPD [‡]	$V_{CC} = 2.1 \text{ V to } 0.0000000000000000000000000000000000$				±50	,	±50		±50	μΑ	
lozh	$V_{CC} = 2.1 \text{ V to } 5$ $V_{O} = 2.7 \text{ V, } \overline{\text{OE}} 2$				10	7908	10		10	μΑ	
lozL	$V_{CC} = 2.1 \text{ V to 5}$ $V_{O} = 0.5 \text{ V, OE}$	5.5 V, ≥ 2 V			-10	ď	-10		-10	μΑ	
l _{off}	$V_{CC} = 0$,	V_I or $V_O \le 4.5 \text{ V}$			±100				±100	μΑ	
ICEX Outputs high	$V_{CC} = 5.5 \text{ V},$	V _O = 5.5 V			50		50		50	μΑ	
IO§	$V_{CC} = 5.5 \text{ V},$	V _O = 2.5 V	-50	-100	-180	-50	-180	– 50	-180	mA	
Outputs high		0			0.5		0.5		0.5		
I _{CC} Outputs low	$V_{CC} = 5.5 \text{ V, I}_{O} = 0,$ $V_{I} = V_{CC} \text{ or GND}$				85		85		85	mA	
Outputs disabled					0.5		0.5		0.5		
ΔI _{CC} ¶	V _{CC} = 5.5 V, On Other inputs at V				1.5		1.5		1.5	mA	
C _i	V _I = 2.5 V or 0.5	V		3.5						pF	
Co	V _O = 2.5 V or 0.	5 V		8						pF	

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

[†] All typical values are at $V_{CC} = 5 \text{ V}$.

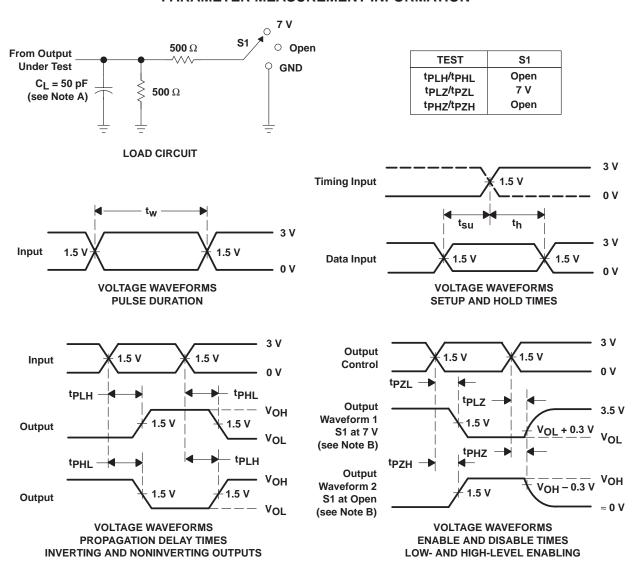
[‡] This parameter is characterized, but not production tested.

[§] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

SCBS223E - OCTOBER 1992 - REVISED MAY 1997

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)


				= 5 V, 25°C	SN54AB	Г16843	SN74AB1	Г16843	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
t _W Pulse duration	CLR low	3.3		3.3	E.	3.3			
	Pulse duration	PRE low	3.3		3.3	Z	3.3		ns
		LE high	3.3		3.3	2	3.3		
t _{SU} Setup time, data before LE↓	Sotup time, data before I E	High	0.9		0.9	•	0.9		nc
	Setup time, data before LEV	Low	0.6		0.6		0.6		ns
t _h Hold time, data	Hold time, data after I E	High	1.7		01.7		1.7		ne
	HOW WITE, data after LEV	Low	1.8		2 1.8		1.8		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM TO (INPUT) (OUTPUT)		V _{CC} = 5 V, T _A = 25°C			SN54ABT16843		SN74ABT16843		UNIT
	(INFOT)	(0011-01)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	D	Q	1.6	3.1	4.2	1.6	5.1	1.6	4.8	ne
^t PHL		3	1.6	3.2	4.2	1.6	5	1.6	4.8	ns
^t PLH	LE	Q	2.3	4	5	2.3	6.3	2.3	5.9	ns
^t PHL		Q	2.5	3.9	4.8	2.5	5.6	2.5	5.3	115
^t PLH		_	2.1	4	5.1	2.1	6.3	2.1	6.1	
^t PHL	PRE	Q	2.2	3.7	4.6	2.2	5.3	2.2	5	ns
t _{PLH}	<u> </u>	Q	1.9	3.7	4.8	1.9	5.7	1.9	5.4	ns
^t PHL	CLR	Q	2.2	4.2	5.3	2.2	6.1	2.2	6	115
^t PZH	ŌĒ	ŌĒ Q	1.6	3.3	4.3	2 1.6	5.5	1.6	5.4	
t _{PZL}			2	3.2	4.6	2	5.9	2	5.8	ns
t _{PHZ}	ŌĒ	Q	1.7	4	5.5	1.7	6.4	1.7	6.3	200
tPLZ	OE .	Q	1.7	3.7	4.4	1.7	5.3	1.7	5.2	ns

SCBS223E - OCTOBER 1992 - REVISED MAY 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , $t_r \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated