SN54ABTH162260, SN74ABTH162260 12-BIT TO 24-BIT MULTIPLEXED D-TYPE LATCHES WITH SERIES-DAMPING RESISTORS AND 3-STATE OUTPUTS

SCBS240D - JUNE 1992 - REVISED MAY 1997

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- B-Port Outputs Have Equivalent 25- Ω Series Resistors, So No External Resistors Are Required
- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical $\mathrm{V}_{\text {OLP }}$ (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Impedance State During Power Up and Power Down
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) Package and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

SN54ABTH162260 . . . WD PACKAGE SN74ABTH162260... DL PACKAGE (TOP VIEW)		
OEA 1	$1 \cup_{56}$	OE2B
LE1B 2	255	LEA2B
2B3 3	354	2B4
GND 4	453] GND
2B2 5	552	2B5
2B1 6	651	2B6
$\mathrm{V}_{\mathrm{CC}} 7$	750	V_{CC}
A1 ${ }^{\text {c }}$	849	2B7
A2 9	948	2B8
A3 1	1047	2B9
GND 1	1146	$] \mathrm{GND}$
A4 1	1245	2B10
A5 1	1344	2B11
A6 1	$14 \quad 43$	2B12
A7 1	1542] 1 12
A8 1	$16 \quad 41$	1811
A9 1	1740	1B10
GND 1	18 39	GND
A10 1	1938	1B9
A11 20	$20 \quad 37$	$1 \mathrm{B8}$
A12 2	2136	1B7
$\mathrm{V}_{\mathrm{CC}} 2$	2235	V_{CC}
1B1 2	$23 \quad 34$	$1 \mathrm{B6}$
1B2 2	$24 \quad 33$	1 B 5
GND 2	$25 \quad 32$	GND
1B3 2	$26 \quad 31$	1B4
LE2B 27	$27 \quad 30$	LEA1B
SELC	$28 \quad 29$] $\overline{O E 1 B}$

The 'ABTH162260 are 12-bit to 24-bit multiplexed D-type latches used in applications where two separate data paths must be multiplexed onto, or demultiplexed from, a single data path. Typical applications include multiplexing and/or demultiplexing of address and data information in microprocessor or bus-interface applications. These devices are also useful in memory-interleaving applications.
Three 12-bit I/O ports (A1-A12, 1B1-1B12, and 2B1-2B12) are available for address and/or data transfer. The output-enable $(\overline{\mathrm{OE} 1 \mathrm{~B}}, \overline{\mathrm{OE} 2 \mathrm{~B}}$, and $\overline{\mathrm{OEA}})$ inputs control the bus-transceiver functions. The $\overline{\mathrm{OE} 1 \mathrm{~B}}$ and $\overline{\mathrm{OE} 2 \mathrm{~B}}$ control signals also allow bank control in the A-to-B direction.

Address and/or data information can be stored using the internal storage latches. The latch-enable (LE1B, LE2B, LEA1B, and LEA2B) inputs are used to control data storage. When the latch-enable input is high, the latch is transparent. When the latch-enable input goes low, the data present at the inputs is latched and remains latched until the latch-enable input is returned high.

The B-port outputs, which are designed to sink up to 12 mA , include equivalent $25-\Omega$ series resistors to reduce overshoot and undershoot.

SN54ABTH162260, SN74ABTH162260

12-BIT TO 24-BIT MULTIPLEXED D-TYPE LATCHES

WITH SERIES-DAMPING RESISTORS AND 3-STATE OUTPUTS

SCBS240D - JUNE 1992 - REVISED MAY 1997

description (continued)

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
When V_{CC} is between 0 and 2.1 V , the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V , $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABTH162260 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABTH162260 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Function Tables

B TO A ($\overline{\mathrm{OEB}}=\mathrm{H}$)

INPUTS						$\begin{gathered} \text { OUTPUT } \\ \text { A } \end{gathered}$
1B	2B	SEL	LE1B	LE2B	$\overline{\text { OEA }}$	
H	X	H	H	X	L	H
L	X	H	H	x	L	L
x	x	H	L	x	L	A_{0}
x	H	L	x	H	L	H
X	L	L	X	H	L	L
x	x	L	X	L	L	A_{0}
X	X	X	X	X	H	Z

A TO B $(\overline{O E A}=H)$

INPUTS					OUTPUTS	
A	LEA1B	LEA2B	$\overline{\text { OE1B }}$	$\overline{\text { OE2B }}$	1B	2B
H	H	H	L	L	H	H
L	H	H	L	L	L	L
H	H	L	L	L	H	$2 \mathrm{~B}_{0}$
L	H	L	L	L	L	$2 \mathrm{~B}_{0}$
H	L	H	L	L	$1 \mathrm{~B}_{0}$	H
L	L	H	L	L	$1 \mathrm{~B}_{0}$	L
X	L	L	L	L	$1 \mathrm{~B}_{0}$	$2 \mathrm{~B}_{0}$
X	X	X	H	H	Z	Z
X	X	X	L	H	Active	Z
X	X	X	H	L	Z	Active
X	X	X	L	L	Active	Active

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger
Supply voltage range, V_{CC} -0.5 V to 7 V
Input voltage range, V_{I} (see Note 1) . -0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots \ldots \ldots \ldots \ldots .$.
Current into any output in the low state, I_{O} : SN54ABTH162260 (A port) 96 mA
SN74ABTH162260 (A port) . 128 mA
B port 30 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$. 18 mA
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$. 50 mA
Package thermal impedance, $\theta_{\text {JA }}$ (see Note 2): DL package . $74^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.
recommended operating conditions (see Note 3)

NOTE 3: Unused control inputs must be held high or low to prevent them from floating.

SN54ABTH162260, SN74ABTH162260 12-BIT TO 24-BIT MULTIPLEXED D-TYPE LATCHES WITH SERIES-DAMPING RESISTORS AND 3-STATE OUTPUTS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

* On products compliant to MIL-PRF-38535, this parameter does not apply.
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger This parameter is characterized but not tested
§ The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
II Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN54ABTH162260, SN74ABTH162260

12-BIT TO 24-BIT MULTIPLEXED D-TYPE LATCHES

WITH SERIES-DAMPING RESISTORS AND 3-STATE OUTPUTS

SCBS240D - JUNE 1992 - REVISED MAY 1997
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		SN54ABTH162260 $\operatorname{MIN} \quad$ MAX		SN74ABTH162260		UNIT
		MIN	MAX			MIN	MAX	
$\mathrm{t}_{\text {w }}$	Pulse duration, LE1B, LE2B, LEA1B, or LEA2B high	3.3				3.3		ns
$\mathrm{t}_{\text {su }}$	Setup time, data before LE1B, LE2B, LEA1B, or LEA2B \downarrow	1.5				1.5		ns
th	Hold time, data after LE1B, LE2B, LEA1B, or LEA2B \downarrow	1		1		1		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABTH162260		SN74ABTH162260		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	B	1.4	3.6	5.2	1.4	6.3	1.4	6.1	ns
tPHL			2.7	4.8	6.4	2.7	7.4	2.7	7.1	
tPLH	B	A	1.6	3.6	5.2	1.6	6.4	1.6	6	ns
tPHL			1.7	3.8	5.5	1.7	6.5	1.7	6.2	
tPLH	LE	A	1.8	3.9	5.3	1.8	6.6	1.8	6.3	ns
tPHL			2.3	4.1	5.4	2.3	6.1	2.3	5.8	
tPLH	LE	B	1.6	3.7	5.4	1.6	6.4	1.6	6.1	ns
tPHL			2.8	4.9	6.4	2.8	7.5	2.8	7.1	
tPLH	SEL (1B)	A	1.5	3.6	5	1.5	5.9	1.5	5.6	ns
tPHL			1.8	3.5	4.8	1.8	5.2	1.8	5	
tPLH	SEL (2B)	A	1.2	3.6	5.1	1.2	6.5	1.2	6.3	ns
tPHL			1.7	4	5.5	$\bigcirc 1.7$	6.5	1.7	6.2	
tPZH	$\overline{\mathrm{OE}}$	A	1.1	3.5	5.2	1.1	6.5	1.1	6.3	ns
tPZL			2.1	4.2	5.7	2.1	6.6	2.1	6.5	
tPZH	$\overline{\mathrm{OE}}$	B	1	3.4	4.9	1	6.4	1	6.3	ns
tPZL			2.9	5.5	6.8	2.9	8.3	2.9	8.2	
tPHZ	$\overline{O E}$	A	2.5	4.5	5.9	2.5	6.9	2.5	6.7	ns
tPLZ			1.8	3.4	4.8	1.8	5.6	1.8	5.2	
tPHZ	$\overline{\mathrm{OE}}$	B	2.1	4.4	5.7	2.1	7.7	2.1	7.5	ns
tPLZ			1.7	3.9	5.4	1.7	6.3	1.7	6.2	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

VOLTAGE WAVEFORMS
PULSE DURATION
Timing Input

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

