

CD14538B Types

CMOS Dual Precision Monostable Multivibrator

High-Voltage Types (20-Volt Rating)

Features:

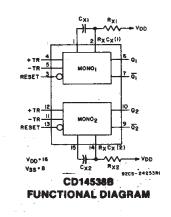
÷.

- Retriggerable/resettable capability
- Trigger and reset propagation delays
- independent of R_x, C_x
- Triggering from leading or trailing edge
- Q and Q buffered outputs available
- Separate resets
- Replaces CD4538B Type

CD14538B dual precision monostable multivibrator provides stable retriggerable/resettable one-shot operation for any fixed-voltage timing application.

An external resistor (R_x) and an external capacitor (C_x) control the timing and accuracy for the circuit. Adjustment of Rx and Cx provides a wide range of output pulse widths from the Q and Q terminals. The time delay from trigger input to output transition (trigger propagation delay) and the time delay from reset input to output transition (reset propagation delay) are independent of Rx and Cx. Precision control of output pulse widths is achieved through linear CMOS techniques.

Leading-edge-triggering (+TR) and trailing-edge-triggering (-TR) inputs are provided for triggering from either edge of an input pulse. An unused +TR input should be tied to Vss. An unused -TR input should be tied to Vpp. A RESET (on low level) is provided for immediate termination of the output pulse or to prevent output pulses when power is turned on. An unused RESET input should be tied to Vpp. However, if an entire section of the CD14538B is not used, its inputs must be tied to either VDD or VSS. See Table I.

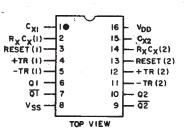

In normal operation the circuit retriggers (extends the output pulse one period) on the application of each new trigger pulse. For operation in the non-retriggerable mode, Q is connected to -TR when leading-edge triggering (+TR) is used or Q is connected to +TR when trailing-edge triggering (-TR) is used. The time period (T) for this multivibrator can be calculated by: $T = R_x C_x$.

The minimum value of external resistance, R_x , is 4 K Ω . The minimum and maximum values of external capacitance, Cx, are 0 pF and 100 µF, respectively.

The CD14538B types are supplied in 16-lead hermetic dualin-line ceramic packages (D and F suffixes), 16-lead dualin-line plastic packages (E suffix), and in chip form (H suffix).

The CD14538B is interchangeable with type MC14538 and is similar to and pin-compatible with the CD4098B* and CD4538B. It can replace the CD4538B which type is not recommended for new designs.

*T = 0.5 R_xC_x for $C_x \ge 1000 \text{ pF}$ #T = R_xC_x ; $C_xmin = 5000 \text{ pF}$


- Wide range of output-pulse widths
- Schmitt-trigger input allows unlimited
- rise and fall times on +TR and -TR inputs 100% tested for maximum guiescent current at 20 V
- Maximum input current of 1 µA at 18 V over
- full package-temperature range; 100 nA at 18 V and 25° C
- Noise margin (full package-temperature range):

 - $1 V at V_{DD} = 5 V$
 - 2 V at V_{DD} = 10 V 2.5 V at Vop = 15 V
- = 5-V, 10-V, and 15-V parametric ratings Standardized. symmetrical output characteristics
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices."

Applications:

- Pulse delay and timing
- Pulse shaping

TERMINALS 1,8,15 ARE ELECTRICALLY CONNECTED INTERNALLY 92CS-24848RI

Terminal Assignment

MAXIMUM RATINGS, Absolute-Maximum Values:

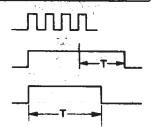
DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to V _{SS} Terminal)	
INPUT VOLTAGE RANGE, ALL INPUTS	-0.5V to Voo +0.5V
DC INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (PD):	
For $T_A = -55^{\circ}C$ to $+100^{\circ}C$	
POWER DISSIPATION PER PACKAGE (PD): For $T_A = -55^{\circ}C$ to $+100^{\circ}C$. For $T_A = +100^{\circ}C$ to $+125^{\circ}C$. DEVICE DISSIPATION PER OUTPUT TRANSISTOP	Derate Linearity at 12mW/9C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	and the second
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)	
OPERATING-TEMPERATURE RANGE (TA)	
STORAGE TEMPERATORE RANGE (1stg)	
STORAGE TEMPERATURE RANGE (Tstg) LEAD TEMPERATURE (DURING SOLDERING):	

RECOMMENDED OPERATING CONDITIONS For maximum reliability, nominal operating conditions should be selected so that operating is always within the following ranges:

CHARACTERISTIC		Voo	LIN		
CHARACI		(V)-	Min.	Max.	UNITS
Supply-Voltage Range (For T _A =Full Pa	ackage-Temperature Range)	-	3	18	y
Input Pulse Width	twn, twL	5	140		
+TR, -TR, or RESET		10	80	-	ns
		15	60	<u> </u>	

TABLE I CD4538B FUNCTIONAL TERMINAL CONNECTIONS

FUNCTIION	V _{DD} TO TERM. NO.			TO 4. NO.		PULSE RM. NO.	OTHER CONNECTIONS			
	MONO1	MONO ₂	MONO	MONO ₂	MONO1	MONO2	MONO1	MONO ₂		
Leading-Edge Trigger/ Retriggerable	3, 5	11, 13			4	12				
Leading-Edge Trigger/ Non-Retriggerable	3	13		-	4	12	5-7	11-9		
Trailing-Edge Trigger/ Retriggerable	3	. 13	4	12	5	° 11				
Trailing-Edge Trigger/ Non-Retriggerable	3	13			5	. 11	4-6	12-10		


NOTES:

1. A RETRIGGERABLE ONE-SHOT MULTIVIBRATOR HAS AN OUTPUT PULSE WIDTH WHICH IS EXTENDED ONE FULL TIME PERIOD (T) AFTER APPLICATION OF THE LAST TRIGGER PULSE.

- 2. A NON-RETRIGGERABLE ONE-SHOT MULTIVIBRATOR HAS A TIME PERIOD (T) REFERENCED FROM THE APPLI-CATION OF THE FIRST TRIGGER PULSE.
- RETRIGGERABLE MODE PULSE WIDTH (+TR MODE)

INPUT PULSE TRAIN

NON-RETRIGGERABLE MODE PULSE WIDTH (+TR MODE)

3

CD14538B Types

STATIC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC							IPERATU	UNITS			
	V ₀ (V)	V _{IN} (V)	V ₀₀ (V)	-55	-40	+85	+125	Min.	+25 Typ.	Max.	
		0,5	5	5	5	150	150		0.04	5	
Quiescent Device	_	0,10	10	10	10	300	300		0.04	10	1.
Current, Ipp Max.	-	0,15	15	20	20	600	600	-	0.04	20	μA
	-	0,20	20	100	100	3000	3000		0.08	100	1 .
Output Low (Ciple)	0.4	0,5	5.	0.64	0.61	0.42	0.36	0.51	1	-	<u> </u>
Output Low (Sink)	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6		1
Current, IoL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8		1
	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	_	mA
Output High (Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2		1
Current, IoH Min.	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6		
	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	_	1
Output Voltage:	_	0,5	5	0.05				—	0	0.05	1
Low-Level, Vol. Max.	—	0,10	10	0.05				—	0	0.05	1
LOW-Level, VOL WIAX.	-	0,15	15	0.05				- 1	0	0.05	1
Output Voltage:	—	0,5	5	4.95			4.95	5	-		
High-Level, Von Min.		0,10	10		9.	95		9.95	10	—	
	—	0,15	15	14.95				14.95	15		1
Input Low Voltage, V _{IL} Max.	0.5,4.5	1	5	1.5				—	— ·	1.5	
	1,9	—	10	3				—	—	3	1
	1.5,13.5	1	. 15	4					—	4] v
Input High Voltage,	0.5,4.5		5	3.5			. 3.5	—] *	
Vin Min.	1,9	-	10	7				7	—	—]
	1.5,13.5		15	11				11	—	— .]
Input Current, I _{IN} Max.	-	0,18	18	±0.1	±0.1	±1	±1	_	±10 ⁻⁵	±0.1	μA

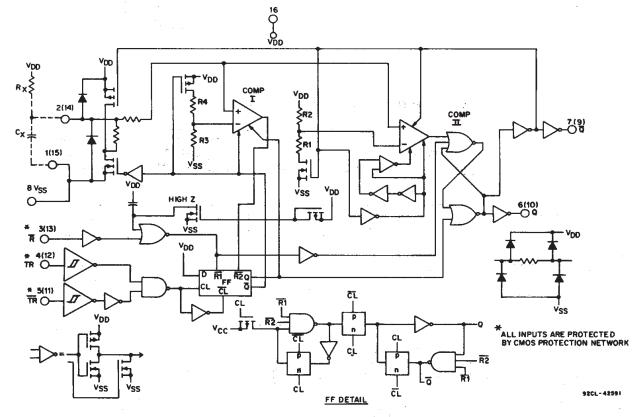


Fig. 1 - Logic diagram (½ of device shown).

CHARACTERISTIC		TEST CONDITIONS				
		V _{DD} (V)	Min.	Тур.	Max.	
Transition Time t _{TLH}	, t _{THL}	5		100	200	1
		10	_	50	100	
		15		40	80	
Propagation Delay Time: tPL	4, tenc	5	_	300	600	1
+TR or -TR to Q or Q		10	-	150	300	
		15		100	220	ns
Reset to Q or Q		5		250	500	1
		10	-	125	250	
		15		95	190	
Minimum Input Pulse Width: tw	н, t _{wL}	5	_	80	140	
+TR, -TR or Reset		10	-	40	80	
		15		30	60	
Output Pulse Width - Q or Q:	. • T .	5	198	210	230	
C _x = 0.002 μF, R _x = 100 KΩ		10	200	212	232	μs
		15	202	214	234	
C _x =0.1 μF, R _x =100 KΩ		5	9.4	9.97	10.5	
	;	10	9.4	9.95	10.6	ms
		15	9.5	10	10.6	
C _x =10 μF, R _x =100 KΩ		5	0.95	1	1.06	
		10	0.95	1	1.06	s
		15	0.96	1.01	1.07	
Pulse Width Match between 100	(T ₁ -T ₂)	5	-	±1		
circuits in same package:	T	10	-	±1	-	%
C _x =0.1 μF, R _x =100 KΩ	T ₁	15	_	±1	-	
Minimum Retrigger Time	trr	5	0		_	
		10	0	-		ns
·		15	0	-	-	
Input Capacitance	CIN	Any Input		5	7.5	pF

DYNAMIC ELECTRICAL CHARACTERISTICS, At TA=25° C; Input tr,tr=20 ns, CL=50 pF

*Note: Minimum R_x value=4 K Ω , minimum C_x value=5000 pF.

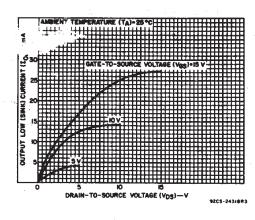


Fig. 2 - Typical output low (sink) current characteristics.

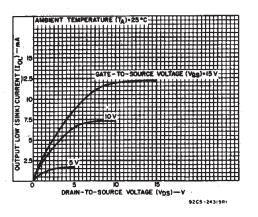
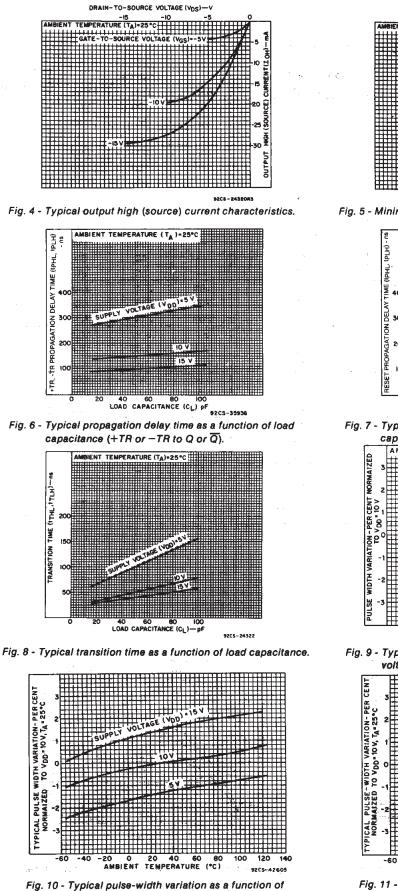
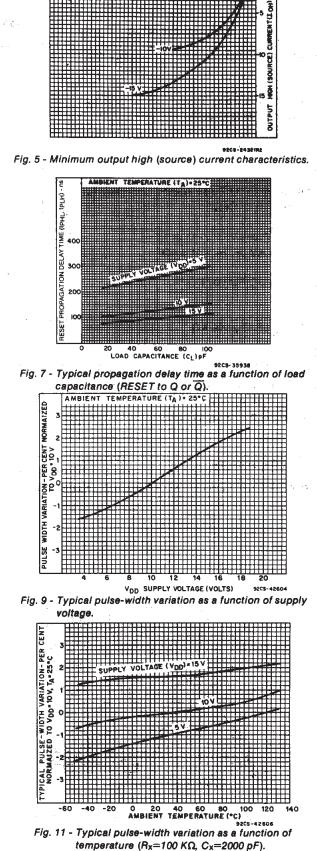




Fig. 3 - Minimum output low (sink) current characteristics.

temperature ($R_x=100 \text{ K}\Omega$, $C_x=0.1 \mu F$).

DRAIN-TO-SOURCE VOLTAGE (VDR)-V

-IS -IO TEMPERATURE (TA)+25+C-II

CD14538B Types

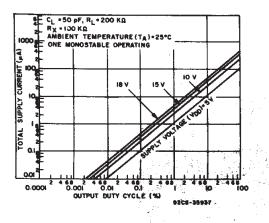
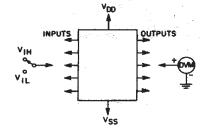



Fig. 12 - Typical total supply current as a function of output duty cycle.

92CS-27441R1

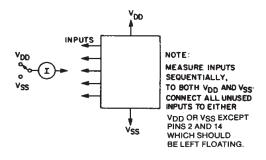


Fig. 15 - Input leakage-current test circuit.

Power-Down Mode

During a rapid power-down condition, as would occur with a power-supply short circuit or with a poorly filtered power supply, the energy stored in Cx could discharge into Pin 2 or 14. To avoid possible device damage in this mode, when C_x is ≥ 0.5 microfarad, a protection diode with a 1-ampere or higher rating (1N5395 or equivalent) and a separate ground return for Cx should be provided as shown in Fig. 17. VDD

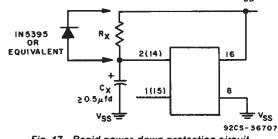
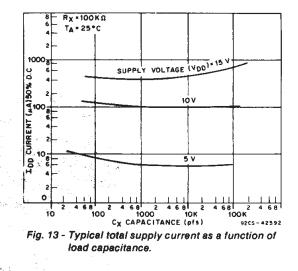



Fig. 17 - Rapid power-down protection circuit.

NOTE:

1. Test any combination of inputs. 2. When measuring VIH or VIL for Schmitt trigger inputs (+TR, -TR), the input must first be brought to VDD or Vss, respectively, then reduced to the specified limit.

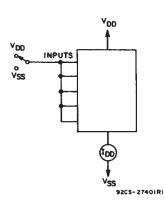


Fig. 16 - Quiescent device current test circuit.

An alternate protection method is shown in Fig. 18, where a 51-ohm current-limiting resistor is inserted in series with Cx. Note that a small pulse width decrease will occur however, and Rx must be appropriately increased to obtain the originally desired pulse width.

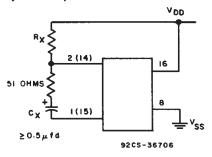
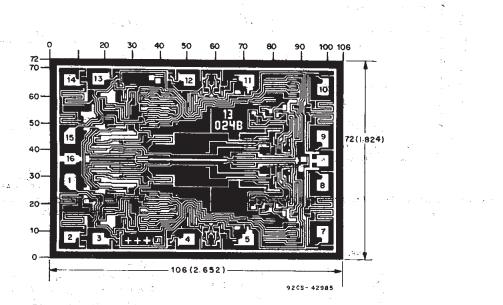
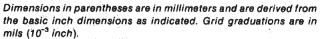
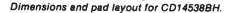





Fig. 18 - Alternate rapid power-down protection circuit.

 $(1 + 1) = \sqrt{2} \left(-\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \right) \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \right) \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} +$

in the second second


sense als prees

ان المراجع الم المحلة المراجع المراجع

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated