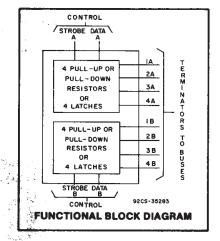


Data sheet acquired from Harris S


RECOMMENDED FOR NEW DESIGNS

Programmable Dual 4-Bit Terminator

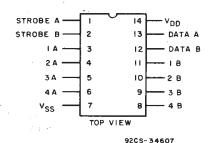
High-Voltage Types (20-Volt Rating)

Features:

- One standard "B" output will drive eight terminator circuits.
- Will terminate a CMOS data bus with up to 40 B-series inputs inputs or 3-state outputs connected at VDD of 5 V.
- Input terminals protected by standard "B" series ESD protection network.
- Preserves final logic state.
- Output after switching is closer to VDD or Vss rail than with a resistor.
- Requires only one solder connection.
- Open circuited terminator not used will not affect performance.
- Can be connected to any CMOS I/O line.
- Draws current only when logic state is changing.
- Can be preset.

CD40117B Types

■ CD40117B is a dual 4-bit terminator that can be programmed by means of STROBE and DATA control bits to function as pull-up or pull-down resisters. The CD40117B can also be programmed to function as latches to terminate any open or unused CMOS logic when used with 3 state logic or during a power-down condition. Considerable savings in power and board space can be realized when this device is used to replace pull-up or pull-down resistors. When the STROBE is in the logic "1" state, the terminator functions as a pull-up resistor if the DATA input is a logic "1" or as a pull-down resistor if the DATA input is a logic "0".


When the STROBE is in the logic "0" state, the terminator performs the latch function, i.e., it follows the changing states of the bus. If the bus goes into the high-Z state or into a power-down condition, the latched terminator retains the data ("1" or "0") that the bus carried before it switched to the high-Z or power-down state. If and when the bus changes from the high-Z state to the state opposite to that which the latch is storing, the bus will override the latch and the terminator will reflect the state on the bus. The small geometries chosen for the inverters in the latch allow this override mode. When checking the data bus whose last state is being preserved by the terminator, a resistor should be used in series with the probe whose input capacitance could trip the small latches. The resistance should be in excess of the output impedance of the latch, i.e., R should be > 30 K Ω at VDD =10 V.

The STROBE and DATA inputs in each section can be paralleled allowing this device to be used as an 8-bit bus terminator.

The CD40117B types are supplied in 14-lead hermetic dual-in-line ceramic packages (D and F suffixes), 14-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

Applications:

- Error state identification.
- Replaces pull-up or pull-down resistors
- Avoids floating inputs in modular systems
- Sharpens transistors (hysteresis)
- Anti-bounce circuit

TERMINAL DIAGRAM

TRUTH TABLE

STROBE	DATA	1A(B)	2A(B)	3A(B)	4A(B)
1 1	0 1 Y	0∆ 1⁺ *	<u>0</u> Δ	<u>0</u> △ 1+ +	0∆ _1⁺ _*

- 1 = High, 0 = Low, X = Don't Care
- Δ. Equivalent to pull-down resistor.
- + Equivalent to pull-up resistor.
- *Equivalent to a latch.

CD40117B Types

MAXIMUM RATINGS, Absolute-Maximum Values:	
DC SUPPLY-VOLTAGE RANGE, (VDD) Voltages referenced to VSS Terminal)	
INPUT VOLTAGE RANGE, ALL INPUTS	
DC INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55°C to +100°C	500mW
For T _A = +100°C to +125°C	Derate Linearity at 12mW/°C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)	100mW
OPERATING-TEMPERATURE RANGE (T _A)	
STORAGE TEMPERATURE RANGE (Tstg)	65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s max	+265°C

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

		LIMITS		
CHARACTERISTIC	V _{DD} (V)	MIN.	TYP.	UNITS
Supply-Voltage Range (For TA=Full Package-Temperature Range)	. –	3	18	٧

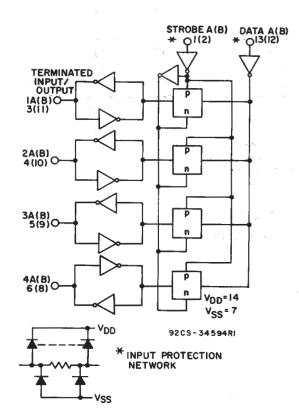
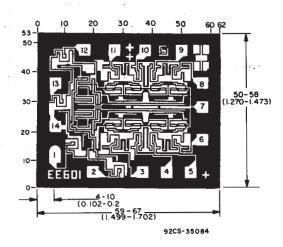



Fig. 1 - Logic diagram (1/2 of CD40117B)

Dimensions and pad layout for CD40117B.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

CD40117B Types

TYPICAL APPLICATIONS

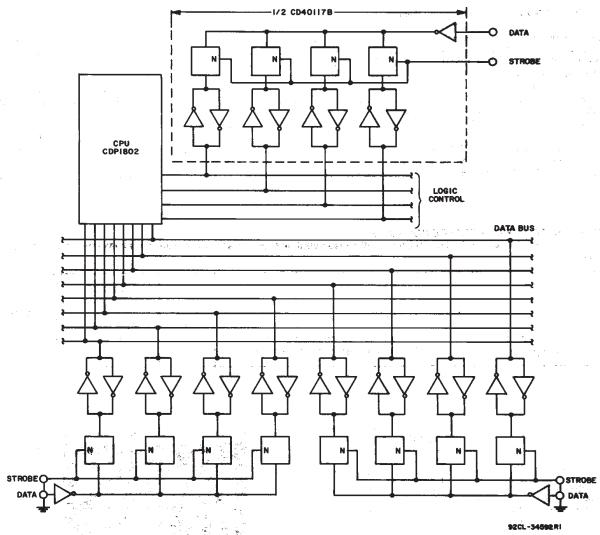


Fig. 2 - Schematic of CD40117B interfacing with microprocessor terminating an 8-bit bus line and 1/2 of CD40117B as a programmable pull-up/pull down logic controller.

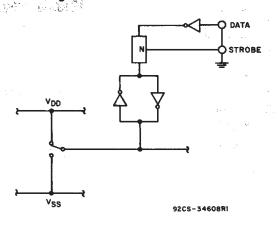


Fig. 3 - Schematic of CD40117B in anti-bounce circuit application.

STATIC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC		CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)					UNITS		
		V _O (V)	VIN (V)	VDD	-55	40 .05	+85	+125	+25			UNITS
Quiescent		14/	0.5	(V) 5	0.25	- 40 0.25	7.5	7.5	Min.	Typ. 0.01	Max. 0.25	
Device			0, 10	10	0.5	0.5	15	15		0.01	0.5	
Current	aal		0, 15	15	1	1	30	30		0.01	1	μΑ
Max.	100		0, 20	20	5	. 5	150	150	_	0.02	5	r
Output Low		0.4	0, 5	5			_	_	1374	25	_	1 1
Sink Current	IOL	0.5	0, 10	10		_	_			60	_	
Min.	-	1.5	0, 15	15			_		_	250		
Output High		4.6	0, 5	5	_	_	_			-25		
(Source)		2.5	0, 5	5		_						μΑ
Current	ІОН	9.5	0, 10	10		_	-		_	-60		
Min.		13.5	0, 15	15		1	_	_	_	-250	_	
Output Voltage:			0, 5	5		0.0	05	· .		0	0.05	
Low-Level	VOL		0, 10	10	0.05			_	0	0.05	1	
Max.			0, 15	15	112	0.0				0	0.05	V
Output Voltage:	. ,		0, 5	. 5		4.9	95		4.95	5	_	
High-Level	۷он		0, 10	10		9.9			9.95	10		
Min.	in a		0, 15	15		14.95			14.95	15	_	
Input Low	nput Low 0.			5		1.5			_		1.5	
Voltage	VIL	1, 9 1.5, 13.5		10	3			_	_	3		
Max.				15	4				_	4	v	
Input High		0.5, 4.5		5	3.5			3.5			1 '	
Voltage	٧ıH		1, 9 — 10 7				7		_			
Min.		1.5, 13.5		15	ļ	1	1		11			
Input Current Max.	IIN		0, 18	18	±0.1	±0.1	±1	±1	_	±10-5	±0.1	μΑ

DYNAMIC ELECTRICAL CHARACTERISTICS at TA=25°C; Input ty, ty=20 ns, CL=50 pF, RL=200 k Ω

CHARACTERISTIC		TEST CONDITIONS		UNITS			
		V _{DD} (V)	MIN. TYP.		MAX.		
Propagation Delay Time	tPHL	5	_	1.7		μs	
Strobe, Data to Outputs		10	l –	850	_	ns	
•		15	—	575	—	ns	
		5	-	1.5	_	μs	
	tPLH	10	· —	625	_	ns	
		15		500		ns	
Transition Time		5	_	3.3	_	· · ·	
	tTHL,	10	_	1.6		μs	
, and the second	tTLH .	15		1.1	· · — ;	4	
Minimum Strobe Pulse Width	tw	5 10 15	* =	1.5 600	=	μs ns	
Minimum Data Pulse Width	twH,	5 10 15		1.6 700 500		μs ns ns	
Minimum Terminator Input/Output Pulse Width	tw	5	<u></u> -	10		ns ns	
Minimum Data	tsu	5	. —	0			
Setup Time		10	l –	Ó	_	ns	
Data to Strobe	1.1.1	15	_	Ö	_		
Input Capacitance	CIN	Any Input		5	_	ρF	

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated