

Data sheet acquired from Harris Semiconductor

January 1997

NOT RECOMMENDED FOR NEW DESIGNS Use CMOS Technology

· Buffered Inputs

Features

- Typical Propagation Delay: 6.4ns at V_{CC} = 5V, $T_A = 25^{\circ}C, C_L = 50pF$
- CD74FCT540
 - Invertina
- CD74FCT541
 - Noninverting
- SCR Latchup Resistant BiCMOS Process and **Circuit Design**
- Speed of Bipolar FAST™/AS/S
- 64mA Output Sink Current
- Output Voltage Swing Limited to 3.7V at V_{CC} = 5V
- Controlled Output Edge Rates
- Input/Output Isolation to V_{CC}
- . BiCMOS Technology with Low Quiescent Power

CD74FCT540, CD74FCT541

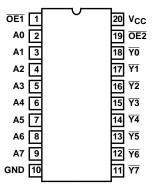
BiCMOS FCT Interface Logic, Octal Buffers/Line Drivers, Three-State

Description

The CD74FCT540 and CD74FCT541 octal buffers/line drivers use a small geometry BiCMOS technology. The output stage is a combination of bipolar and CMOS transistors that limits the output HIGH level to two diode drops below V_{CC}. This resultant lowering of output swing (0V to 3.7V) reduces power bus ringing (a source of EMI) and minimizes V_{CC} bounce and ground bounce and their effects during simultaneous output switching. The output configuration also enhances switching speed and is capable of sinking 64 milliamperes.

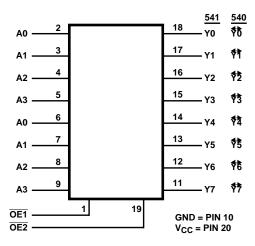
The CD74FCT540 is a three-state buffer having two active LOW output enables. The CD74FCT541 is a noninverting three state buffer having two active LOW output enables.

Ordering Information


PART NUMBER	TEMP. RANGE (^O C)	PACKAGE	PKG. NO.
CD74FCT540E	0 to 70	20 Ld PDIP	E20.3
CD74FCT541E	0 to 70	20 Ld PDIP	E20.3
CD74FCT540M	0 to 70	20 Ld SOIC	M20.3
CD74FCT541M	0 to 70	20 Ld SOIC	M20.3
CD74FCT541SM	0 to 70	20 Ld SSOP	M20.209

NOTE: When ordering the suffix M and SM packages, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel.

Pinouts


CD74FCT540 (PDIP, SOIC) TOP VIEW

CD74FCT541 (PDIP, SOIC, SSOP) TOP VIEW

OE1 1		20	٧cc
A0 2]	19	OE2
A1 3	1	18	Y0
A2 4]	17	Y1
A3 5]	16	Y2
A4 6]	15	Y3
A5 7]	14	Y4
A6 8	1	13	Y5
A7 9		12	Y6
GND 10	5	11	Y7

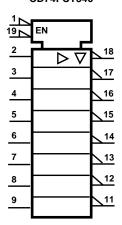
Functional Diagram

TRUTH TABLE (Note 1)

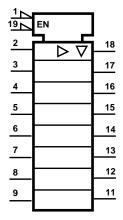
INPUTS			OUTPUTS		
OE1	OE2	A _n	CD74FCT540	CD74FCT541	
L	L	Н	L	Н	
Н	Х	X	Z	Z	
Х	Н	Х	Z	Z	
L	L	L	Н	L	

NOTE:

1. H = HIGH Voltage Level


L = LOW Voltage Level

X = Immaterial


Z = HIGH Impedance

IEC Logic Symbol

CD74FCT540

CD74FCT541

Thermal Information

Thermal Resistance (Typical, Note 2)	θ _{JA} (°C/W)
PDIP Package	135
SOIC Package	125
SSOP Package	130
Maximum Junction Temperature	150°C
Maximum Storage Temperature Range65	5°C to 150°C
Maximum Lead Temperature (Soldering 10s)	300°C
(SOIC and SSOP-Lead Tips Only)	

Operating Conditions

Operating Temperature Range (T _A)	0°C to 70°C
Supply Voltage Range, V _{CC}	4.75V to 5.25V
DC Input Voltage, V ₁	0 to V _{CC}
DC Output Voltage, VO	0 to ≤ V _{CC}
Input Rise and Fall Slew Rate, dt/dv	0 to 10ns/V

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

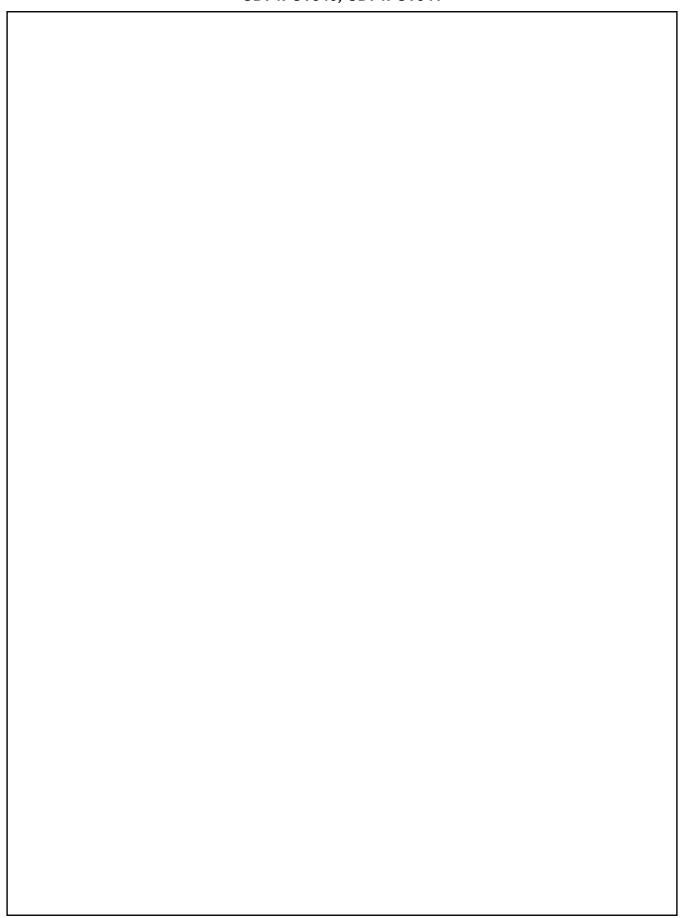
Electrical Specifications Commercial Temperature Range 0° C to 70° C, V_{CC} Max = 5.25V, V_{CC} Min = 4.75V (Note 5)

					AMBIENT TEMPERATURE (T _A)				
		TEST CO	NDITIONS		25	°C	0°C TO	70°C	
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	MAX	MIN	MAX	UNITS
High Level Input Voltage	V _{IH}			4.75 to 5.25	2	-	2	-	V
Low Level Input Voltage	V _{IL}			4.75 to 5.25	-	0.8	-	0.8	V
High Level Output Voltage	V _{OH}	V_{IH} or V_{IL}	-15	Min	2.4	-	2.4	-	V
Low Level Output Voltage	V _{OL}	V _{IH} or V _{IL}	64	Min	-	0.55	-	0.55	V
High Level Input Current	I _{IH}	V _{CC}		Max	-	0.1	-	1	μА
Low Level Input Current	I _{IL}	GND		Max	-	-0.1	-	-1	μА
Three State Leakage Current	lozh	V _{CC}		Max	-	0.5	-	10	μА
	l _{OZL}	GND		Max	-	-0.5	-	-10	μА
Input Clamp Voltage	V _{IK}	V _{CC} or GND	-18	Min	-	-1.2	-	-1.2	V
Short Circuit Output Current (Note 3)	I _{OS}	V _O = 0 V _{CC} or GND		Max	-60	-	-60	-	mA
Quiescent Supply Current, MSI	Icc	V _{CC} or GND	0	Max	-	8	-	80	μΑ
Additional Quiescent Supply Current per Input Pin TTL Inputs High, 1 Unit Load	Δl _{CC}	3.4V (Note 4)		Max	-	1.6	-	1.6	mA

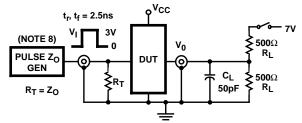
NOTES:

- 3. Not more than one output should be shorted at one time. Test duration should not exceed 100ms.
- 4. Inputs that are not measured are at $V_{\mbox{\footnotesize CC}}$ or GND.
- 5. FCT Input Loading: All inputs are 1 unit load. Unit load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 1.6mA Max. @ $70^{\circ}C$.

Switching Specifications Over Operating Range FCT Series t_r , t_f = 2.5ns, C_L = 50pF, R_L (Figure 3) (Note 6)


			25°C	0°C TO 70°C		
PARAMETER	SYMBOL	V _{CC} (V)	TYP	MIN	MAX	UNITS
Propagation Delays		(Note 6)				
Data to Outputs						
CD74FCT540	t _{PLH} , t _{PHL}	5	6.4	2	8.5	ns
CD74FCT541	t _{PLH} , t _{PHL}	5	6	2	8	ns
Output Disable to Output	t _{PLZ} , t _{PHZ}	5	7.1	2	9.5	ns
Output Enable to Output	t _{PZL} , t _{PZH}	5	7.5	2	10	ns
Power Dissipation Capacitance	C _{PD}					
CD74FCT540	(Note 7)	-	37	-	-	pF
CD74FCT541		-	40	-	-	pF
Minimum (Valley) V _{OHV} During Switching of Other Outputs (Output Under Test Not Switching)	V _{OHV}	5	0.5	-	-	V
Maximum (Peak) V _{OLP} During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP}	5	1	-	-	V
Input Capacitance	Cl	-	-	-	10	pF
Three-State Output Capacitance	CO	-	-	-	15	pF

NOTES:


6. 5V: Min is at 5.25V for 0° C to 70° C, Max is at 4.75V for 0° C to 70° C, Typ is at 5V.

7. C_{PD}, measured per flip-flop, is used to determine the dynamic power consumption.
P_D (per package) = V_{CC} I_{CC} + Σ(V_{CC}² f_I C_{PD} + V_O² f_O C_L + V_{CC} ΔI_{CC} D) where:
V_{CC} = supply voltage
ΔI_{CC} = flow through current x unit load
C_L = output load capacitance
D = duty cycle of input high

f_O = output frequency f_I = input frequency

Test Circuits and Waveforms

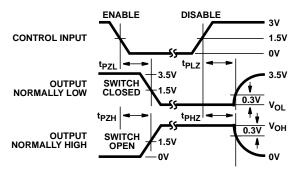
NOTE:

8. Pulse Generator for All Pulses: Rate \leq 1.0MHz; $Z_{\mbox{OUT}} \leq$ 500; $t_{\mbox{f}},\,t_{\mbox{r}} \leq$ 2.5ns.

FIGURE 1. TEST CIRCUIT

SWITCH POSITION

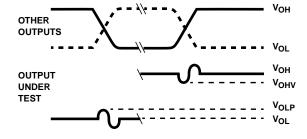
TEST	SWITCH
t _{PLZ} , t _{PZL} , Open Drain	Closed
t _{PHZ} , t _{PZH} , t _{PLH} , t _{PHL}	Open


DEFINITIONS:

C_L = Load capacitance, includes jig and probe capacitance.

 R_T = Termination resistance, should be equal to $Z_{\mbox{OUT}}$ of the Pulse Generator.

 $V_{IN} = 0V$ to 3V.


Input: $t_r = t_f = 2.5$ ns (10% to 90%), unless otherwise specified

3٧ SAME PHASE 1.5V INPUT TRANSITION οv tPLH ^tPHL v_{OH} OUTPUT 1.5V v_{oL} ^tPLH ^tPHI OPPOSITE PHASE 1.5V INPUT TRANSITION ٥v

FIGURE 2. ENABLE AND DISABLE TIMING

FIGURE 3. PROPAGATION DELAY

NOTES:

- 9. V_{OLP} is measured with respect to a ground reference near the output under test. V_{OHV} is measured with respect to V_{OH}.
- 10. Input pulses have the following characteristics:

 $P_{RR} \le 1MHz$, $t_r = 2.5ns$, $t_f = 2.5ns$, skew 1ns.

11. R.F. fixture with 700MHz design rules required. IC should be soldered into test board and bypassed with 0.1μF capacitor. Scope and probes require 700MHz bandwidth.

FIGURE 4. SIMULTANEOUS SWITCHING TRANSIENT WAVEFORMS

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated