#### SN54ABT162244, SN74ABT162244 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCBS238D - JUNE 1992 - REVISED MAY 1997

25 30E

24 40E

SN54ABT162244 . . . WD PACKAGE **Members of the Texas Instruments** SN74ABT162244 . . . DGG, DGV, OR DL PACKAGE Widebus<sup>™</sup> Family (TOP VIEW) Output Ports Have Equivalent 25- $\Omega$  Series **Resistors, So No External Resistors Are** 48 20E 1 OE Required 47 🛛 1A1 1Y1 2 State-of-the-Art *EPIC-*II*B*<sup>™</sup> BiCMOS Design 1Y2 3 46 1A2 Significantly Reduces Power Dissipation GND 4 45 GND 1Y3 5 44 🛛 1A3 Latch-Up Performance Exceeds 500 mA Per • **JEDEC Standard JESD-17** 1Y4 🛛 6 43 🛛 1A4 42 V<sub>CC</sub> V<sub>CC</sub> [] 7 Typical V<sub>OLP</sub> (Output Ground Bounce) 2Y1 8 41 🛛 2A1 < 1 V at V<sub>CC</sub> = 5 V, T<sub>A</sub> =  $25^{\circ}$ C 2Y2 9 40 2A2 **High-Impedance State During Power Up** GND 10 39 🛛 GND and Power Down 2Y3 11 38 2A3 • Distributed V<sub>CC</sub> and GND Pin Configuration 2Y4 12 37 2A4 **Minimizes High-Speed Switching Noise** 3Y1 L 13 36 3A1 Flow-Through Architecture Optimizes PCB 3Y2 14 35 3A2 Layout GND 🛛 15 34 GND Package Options Include Plastic 300-mil 3Y3 16 33 **3**A3 Shrink Small-Outline (DL), Thin Shrink 3Y4 32 3A4 17 Small-Outline (DGG), and Thin Very 31 VCC VCC 18 Small-Outline (DGV) Packages and 380-mil 4Y1 19 30 4A1 Fine-Pitch Ceramic Flat (WD) Package 29 4A2 4Y2 20 Using 25-mil Center-to-Center Spacings GND 21 28 GND 27 4A3 4Y3 22 4Y4 🛛 23 26 🛛 4A4

### description

The 'ABT162244 are 16-bit buffers and line drivers designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. These devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. These devices provide noninverting outputs and symmetrical active-low outputenable (OE) inputs.

The outputs, which are designed to source or sink up to 12 mA, include equivalent 25- $\Omega$  series resistors to reduce overshoot and undershoot.

When V<sub>CC</sub> is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, OE should be tied to V<sub>CC</sub> through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT162244 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ABT162244 is characterized for operation from –40°C to 85°C.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

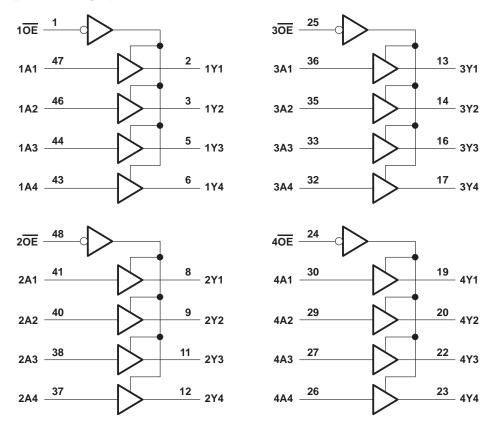


Copyright © 1997, Texas Instruments Incorporated

# SN54ABT162244, SN74ABT162244 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCBS238D – JUNE 1992 – REVISED MAY 1997

## FUNCTION TABLE

| (each 4-bit buffer) |     |        |  |  |  |  |  |  |
|---------------------|-----|--------|--|--|--|--|--|--|
| INP                 | UTS | OUTPUT |  |  |  |  |  |  |
| OE                  | Α   | Y      |  |  |  |  |  |  |
| L                   | Н   | Н      |  |  |  |  |  |  |
| L                   | L   | L      |  |  |  |  |  |  |
| Н                   | Х   | Z      |  |  |  |  |  |  |


## logic symbol<sup>†</sup>

| 10E<br>20E<br>30E<br>40E | 1<br>48<br>25<br>24 | EN1<br>EN2<br>EN3<br>EN4 |   |     |    |            |
|--------------------------|---------------------|--------------------------|---|-----|----|------------|
| 1A1                      | 47                  |                          | 1 |     | 2  | 1Y1        |
| 1A1                      | 46                  | }                        | - | IV  | 3  | 1Y2        |
| 1A2                      | 44                  | <u> </u>                 |   |     | 5  | 1Y3        |
| 1A3                      | 43                  |                          |   |     | 6  | 1Y4        |
| 2A1                      | 41                  | }──                      | 1 | 2 🗸 | 8  | 2Y1        |
| 2A1                      | 40                  | <u>}</u>                 |   | 2 · | 9  | 2Y2        |
| 2A2                      | 38                  | <u>}</u>                 |   |     | 11 | 2Y3        |
| 2A3<br>2A4               | 37                  | <u>}</u>                 |   |     | 12 | 213<br>2Y4 |
| 3A1                      | 36                  |                          | 1 | 3 ▽ | 13 | 3Y1        |
| 3A2                      | 35                  | <u> </u>                 | 1 | 3 v | 14 | 3Y2        |
| 3A3                      | 33                  | <u> </u>                 |   |     | 16 | 3Y3        |
| 3A3                      | 32                  | <u> </u>                 |   |     | 17 | 3Y4        |
| 4A1                      | 30                  | <u> </u>                 | 1 | 4 ▽ | 19 | 4Y1        |
| 4A1<br>4A2               | 29                  |                          |   | 4 * | 20 | 4Y2        |
| 4A2<br>4A3               | 27                  | <u> </u>                 |   |     | 22 | 412<br>4Y3 |
| 4A3<br>4A4               | 26                  |                          |   |     | 23 | 413<br>4Y4 |
| 777                      |                     |                          |   |     |    | 414        |

<sup>†</sup> This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.



#### logic diagram (positive logic)



#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Supply voltage range, V <sub>CC</sub>                                 | –0.5 V to 7 V                  |
|-----------------------------------------------------------------------|--------------------------------|
| Input voltage range, V <sub>I</sub> (see Note 1)                      | –0.5 V to 7 V                  |
| Voltage range applied to any output in the high or power-off state, V | / <sub>O</sub> –0.5 V to 5.5 V |
| Current into any output in the low state, IO                          | 30 mA                          |
| Input clamp current, I <sub>IK</sub> (V <sub>I</sub> < 0)             | –18 mA                         |
| Output clamp current, I <sub>OK</sub> (V <sub>O</sub> < 0)            |                                |
| Package thermal impedance, $\theta_{JA}$ (see Note 2): DGG package    |                                |
| DGV package                                                           |                                |
| DL package                                                            |                                |
| Storage temperature range, T <sub>stg</sub>                           | –65°C to 150°C                 |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.



# SN54ABT162244, SN74ABT162244 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCBS238D – JUNE 1992 – REVISED MAY 1997

## recommended operating conditions (see Note 3)

|                            |                                                    |  | SN54ABT | 162244 | SN74ABT | UNIT |      |
|----------------------------|----------------------------------------------------|--|---------|--------|---------|------|------|
|                            |                                                    |  | MIN     | MAX    | MIN     | MAX  | UNIT |
| VCC                        | Supply voltage                                     |  | 4.5     | 5.5    | 4.5     | 5.5  | V    |
| VIH                        | High-level input voltage                           |  | 2       |        | 2       |      | V    |
| VIL                        | Low-level input voltage                            |  |         | 0.8    |         | 0.8  | V    |
| VI                         | Input voltage                                      |  | 0       | VCC    | 0       | VCC  | V    |
| ЮН                         | High-level output current                          |  |         | -12    |         | -12  | mA   |
| IOL                        | Low-level output current                           |  |         | 12     |         | 12   | mA   |
| $\Delta t/\Delta v$        | Input transition rise or fall rate Outputs enabled |  |         | 10     |         | 10   | ns/V |
| $\Delta t / \Delta V_{CC}$ | Power-up ramp rate                                 |  | 200     |        | 200     |      | μs/V |
| Т <sub>А</sub>             | Operating free-air temperature                     |  | -55     | 125    | -40     | 85   | °C   |

NOTE 3: Unused inputs must be held high or low to prevent them from floating.



## SN54ABT162244, SN74ABT162244 **16-BIT BUFFERS/DRIVERS** WITH 3-STATE OUTPUTS

SCBS238D - JUNE 1992 - REVISED MAY 1997

### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER          |                         | TEST CONDITIONS                                                                                              |                          | Т    | A = 25° | 2    | SN54ABT | 162244 | SN74ABT | 162244 | UNIT |
|--------------------|-------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------|------|---------|------|---------|--------|---------|--------|------|
| PAP                | RAMEIER                 | TEST CONDITIONS                                                                                              |                          | MIN  | TYP†    | MAX  | MIN     | MAX    | MIN     | MAX    | UNIT |
| VIK                |                         | V <sub>CC</sub> = 4.5 V,                                                                                     | lj = -18 mA              |      |         | -1.2 |         | -1.2   |         | -1.2   | V    |
|                    |                         | V <sub>CC</sub> = 4.5 V,                                                                                     | I <sub>OH</sub> = -1 mA  | 3.35 |         |      | 3.35    |        | 3.35    |        |      |
| VOH                | V <sub>CC</sub> = 5 V,  | $I_{OH} = -1 \text{ mA}$                                                                                     | 3.85                     |      |         | 3.85 |         | 3.85   |         | V      |      |
|                    | V <sub>CC</sub> = 4.5 V | I <sub>OH</sub> = -3 mA                                                                                      | 3.1                      |      |         | 3.1  |         | 3.1    |         | v      |      |
|                    |                         | VCC = 4.5 V                                                                                                  | I <sub>OH</sub> = -12 mA | 2.6* |         |      |         |        | 2.6     |        |      |
| VOL                |                         | VCC = 4.5 V                                                                                                  | I <sub>OL</sub> = 8 mA   |      | 0.4     | 0.8  |         | 0.8    |         | 0.65   | V    |
| VOL                |                         | VCC = 4.5 V                                                                                                  | I <sub>OL</sub> = 12 mA  |      |         |      |         |        |         | 0.8    | v    |
| V <sub>hys</sub>   |                         |                                                                                                              |                          |      | 100     |      |         |        |         |        | mV   |
| Ц                  |                         | $V_{CC} = 0$ to 5.5 V, V                                                                                     | = $V_{CC}$ or GND        |      |         | ±1   |         | ±1     |         | ±1     | μΑ   |
| IOZPU‡             | :                       | $V_{CC} = 0 \text{ to } 2.1 \text{ V},$<br>$V_{O} = 0.5 \text{ V to } 2.7 \text{ V},$                        | OE = X                   |      |         | ±50  |         | ±50    |         | ±50    | μΑ   |
| IOZPD <sup>‡</sup> | :                       | $V_{CC} = 2.1 V \text{ to } 0,$<br>$V_{O} = 0.5 V \text{ to } 2.7 V,$                                        | OE = X                   |      |         | ±50  |         | ±50    |         | ±50    | μA   |
| IOZH               |                         | $V_{CC} = 2.1 \text{ V to } 5.5 \text{ V},$<br>$V_{O} = 2.7 \text{ V}, \overline{\text{OE}} \ge 2 \text{ V}$ |                          |      |         | 10   |         | 10     |         | 10     | μA   |
| I <sub>OZL</sub>   |                         | $V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}$<br>$V_{O} = 0.5 \text{ V}, \overline{\text{OE}} \ge 2 \text{ V}$  |                          |      |         | -10  |         | -10    |         | -10    | μA   |
| loff               |                         | $V_{CC} = 0, V_{I} \text{ or } V_{O} \leq$                                                                   | 4.5 V                    |      |         | ±100 |         |        |         | ±100   | μΑ   |
| ICEX               |                         | V <sub>CC</sub> = 5.5 V,<br>V <sub>O</sub> = 5.5 V                                                           | Ouptputs high            |      |         | 50   |         | 50     |         | 50     | μA   |
| IO§                |                         | V <sub>CC</sub> = 5.5 V,                                                                                     | V <sub>O</sub> = 2.5 V   | -25  | -55     | -100 | -25     | -100   | -25     | -100   | mA   |
|                    |                         | V <sub>CC</sub> = 5.5 V,                                                                                     | Outputs high             |      |         | 2    |         | 2      |         | 2      |      |
| ICC                |                         | $I_{O} = 0,$                                                                                                 | Outputs low              |      |         | 30   |         | 30     |         | 30     | mA   |
|                    | -                       | $V_{I} = V_{CC}$ or GND                                                                                      | Outputs disabled         |      |         | 2    |         | 2      |         | 2      |      |
|                    | Data inputs             | V <sub>CC</sub> = 5.5 V,<br>One input at 3.4 V,                                                              | Outputs enabled          |      |         | 50   |         | 50     |         | 50     |      |
| $\Delta I_{CC}$ ¶  |                         | Other inputs at $V_{CC}$ or GND                                                                              | Outputs disabled         |      |         | 50   |         | 50     |         | 50     | μA   |
|                    | Control inputs          | $V_{CC} = 5.5 V$ , One in Other inputs at $V_{CC}$                                                           |                          |      |         | 50   |         | 50     |         | 50     |      |
| Ci                 |                         | V <sub>I</sub> = 2.5 V or 0.5 V                                                                              |                          |      | 3       |      |         |        |         |        | pF   |
| Co                 |                         | $V_{O} = 2.5 \text{ V or } 0.5 \text{ V}$                                                                    |                          |      | 8       |      |         |        |         |        | pF   |

\* On products compliant to MIL-PRF-38535, this parameter does not apply.

<sup>†</sup> All typical values are at  $V_{CC}$  = 5 V. <sup>‡</sup> This parameter is characterized, but not production tested.

§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

 $\P$  This is the increase in supply current for each input that is at the specified TTL voltage level rather than V<sub>CC</sub> or GND.



# SN54ABT162244, SN74ABT162244 **16-BIT BUFFERS/DRIVERS** WITH 3-STATE OUTPUTS

SCBS238D - JUNE 1992 - REVISED MAY 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature,  $C_L = 50 \text{ pF}$  (unless otherwise noted) (see Figure 1)

| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CC</sub> = 5 V,<br>T <sub>A</sub> = 25°C |     |     | MIN | MIN MAX | UNIT |
|------------------|-----------------|----------------|-------------------------------------------------|-----|-----|-----|---------|------|
|                  |                 |                | MIN                                             | TYP | MAX |     |         |      |
| <sup>t</sup> PLH | A               | v              | 1                                               | 2.5 | 3.6 | 1   | 4.1     | ns   |
| <sup>t</sup> PHL |                 | I              | 1                                               | 3.1 | 4.7 | 1   | 5.3     | 115  |
| <sup>t</sup> PZH | ŌĒ              | V              | 1                                               | 3.2 | 4.8 | 1   | 5.6     | ns   |
| tPZL             |                 | I              | 1                                               | 3.2 | 4.7 | 1   | 5.5     | 115  |
| <sup>t</sup> PHZ | OE              | V              | 1                                               | 3.2 | 5.3 | 1   | 6.3     | ns   |
| <sup>t</sup> PLZ | νL              | i              | 1                                               | 3.1 | 4.6 | 1   | 4.9     | 115  |

switching characteristics over recommended ranges of supply voltage and operating free-air temperature,  $C_L = 50 \text{ pF}$  (unless otherwise noted) (see Figure 1)

| PARAMETER        |                 |                |                                                 |     |     |     |         |      |
|------------------|-----------------|----------------|-------------------------------------------------|-----|-----|-----|---------|------|
|                  | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CC</sub> = 5 V,<br>T <sub>A</sub> = 25°C |     |     | MIN | MIN MAX | UNIT |
|                  |                 |                | MIN                                             | TYP | MAX |     |         |      |
| <sup>t</sup> PLH | A               | v              | 1                                               | 2.5 | 3.2 | 1   | 3.9     | ns   |
| <sup>t</sup> PHL |                 | I              | 1                                               | 3.1 | 4   | 1   | 4.8     | 115  |
| <sup>t</sup> PZH | ŌĒ              | V              | 1                                               | 3.2 | 4.2 | 1   | 5.4     | ns   |
| <sup>t</sup> PZL |                 | I              | 1                                               | 3.2 | 4.1 | 1   | 5.1     | 115  |
| <sup>t</sup> PHZ | OE              | v              | 1                                               | 3.2 | 4   | 1   | 4.6     | ns   |
| <sup>t</sup> PLZ | 0E              | ſ              | 1                                               | 3.1 | 3.9 | 1   | 4.5     | 115  |



#### SN54ABT162244, SN74ABT162244 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCBS238D – JUNE 1992 – REVISED MAY 1997

07V TEST **S**1 O Open **500** Ω **S**1 From Output tPLH/tPHL Open  $\Lambda \Lambda A$ **Under Test**  $\cap$ GND 7 V tPLZ/tPZL C<sub>L</sub> = 50 pF tPHZ/tPZH Open **500** Ω (see Note A) 3 V LOAD CIRCUIT **Timing Input** 1.5 V 0 V tw t<sub>su</sub> th 3 V 3 V 1.5 V 1.5 V Input **Data Input** 1.5 V 1.5 V 0 V 0 V **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS PULSE DURATION** SETUP AND HOLD TIMES 3 V 3 V Output 1.5 V 1.5 V 1.5 V 1.5 V Input Control 0 V 0 V <sup>t</sup>PZL ╼ <sup>t</sup>PLH <sup>t</sup>PHL <sup>t</sup>PLZ Output VOH 3.5 V Waveform 1 1.5 V 1.5 V 1.5 V Output V<sub>OL</sub> + 0.3 V S1 at 7 V VOL VOL (see Note B) tPHZ -tPHL -<sup>t</sup>PLH <sup>t</sup>PZH Output VOH ۷он V<sub>OH</sub> – 0.3 V Waveform 2 1.5 V 1.5 V 1.5 V Output S1 at Open ≈ 0 V VOL (see Note B) **VOLTAGE WAVEFORMS** VOLTAGE WAVEFORMS **PROPAGATION DELAY TIMES** ENABLE AND DISABLE TIMES INVERTING AND NONINVERTING OUTPUTS LOW- AND HIGH-LEVEL ENABLING

#### PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
  C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z<sub>Q</sub> = 50 Ω, t<sub>f</sub> ≤ 2.5 ns, t<sub>f</sub> ≤ 2.5 ns.
- C. All input puises are supplied by generators naving the rollowing characteristics: PRR  $\leq$  10 MHz,  $z_0 = 50 \Omega$ ,  $t_f \leq 2.5$  ns,  $t_f \leq 2.5$  ns

D. The outputs are measured one at a time with one transition per measurement.

#### Figure 1. Load Circuit and Voltage Waveforms



#### **IMPORTANT NOTICE**

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated