## SN54ABT16241A, SN74ABT16241A **16-BIT BUFFERS/DRIVERS** WITH 3-STATE OUTPUTS

SCBS096G - FEBRUARY 1991 - REVISED OCTOBER 1998

| •    | Members of the Texas Instruments<br><i>Widebus</i> ™ Family                                                             | SN54ABT16241A WD PACKAGE<br>SN74ABT16241A DGG, DGV, OR DL PACKAGE<br>(TOP VIEW)         |
|------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| •    | State-of-the-Art <i>EPIC</i> -II <i>B</i> <sup>™</sup> BiCMOS Design<br>Significantly Reduces Power Dissipation         |                                                                                         |
| ٠    | Typical V <sub>OLP</sub> (Output Ground Bounce) < 1 V<br>at V <sub>CC</sub> = 5 V, T <sub>A</sub> = 25°C                | 1Y1 [ 2 47 ] 1A1<br>1Y2 [ 3 46 ] 1A2                                                    |
| •    | Distributed V <sub>CC</sub> and GND Pin Configuration<br>Minimizes High-Speed Switching Noise                           | GND                                                                                     |
| ٠    | Flow-Through Architecture Optimizes PCB<br>Layout                                                                       | $1Y4\begin{bmatrix}6 & 43\\1A4\\V_{CC}\begin{bmatrix}7 & 42\\V_{CC}\end{bmatrix}V_{CC}$ |
| •    | High-Drive Outputs (–32-mA I <sub>OH</sub> , 64-mA I <sub>OL</sub> )                                                    | 2Y1 0 8 41 0 2A1<br>2Y2 0 9 40 0 2A2                                                    |
| ٠    | Latch-Up Performance Exceeds 500 mA<br>Per JESD 17                                                                      | GND [] 10 39 ] GND<br>2Y3 [] 11 38 ] 2A3                                                |
| ٠    | ESD Protection Exceeds 2000 V Per<br>MIL-STD-883, Method 3015; Exceeds 200 V<br>Using Machine Model (C = 200 pF, R = 0) | 2Y4 [ 12 37 ] 2A4<br>3Y1 [ 13 36 ] 3A1<br>3Y2 [ 14 35 ] 3A2                             |
|      |                                                                                                                         | GND [] 15 34 ]] GND                                                                     |
| •    | Package Options Include Plastic 300-mil<br>Shrink Small-Outline (DL), Thin Shrink                                       | 3Y3 [ 16 33 ] 3A3                                                                       |
|      | Small-Outline (DGG), and Thin Very                                                                                      | 3Y4 🛛 17 32 🗍 3A4                                                                       |
|      | Small-Outline (DGV) Packages and 380-mil                                                                                | V <sub>CC</sub> [] 18 31 [] V <sub>CC</sub>                                             |
|      | Fine-Pitch Ceramic Flat (WD) Package                                                                                    | 4Y1 🛛 19 🛛 30 🗍 4A1                                                                     |
|      | Using 25-mil Center-to-Center Spacings                                                                                  | 4Y2 🛛 20 29 🛛 4A2                                                                       |
| -    | vintion                                                                                                                 |                                                                                         |
| aeso | ription                                                                                                                 | 4Y3 22 27 4A3                                                                           |
|      | The 'ABT16241A devices are 16-bit buffers and                                                                           | 4Y4 [] 23 26 [] 4A4<br>4OE [] 24 25 [] 3OE                                              |

line drivers designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

These devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. These devices provide true outputs and complementary output-enable (OE and  $\overline{OE}$ ) inputs.

To ensure the high-impedance state during power up or power down, OE should be tied to V<sub>CC</sub> through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The SN54ABT16241A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT16241A is characterized for operation from -40°C to 85°C.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 1998, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

| FUNCTION TABLES |         |        |  |  |  |  |  |  |
|-----------------|---------|--------|--|--|--|--|--|--|
| INPU            | OUTPUTS |        |  |  |  |  |  |  |
| 10E, 40E        | 1A, 4A  | 1Y, 4Y |  |  |  |  |  |  |
| L               | Н       | Н      |  |  |  |  |  |  |
| L               | L       | L      |  |  |  |  |  |  |
| н               | Х       | Z      |  |  |  |  |  |  |

| INPU     | тѕ     | OUTPUTS |
|----------|--------|---------|
| 20E, 30E | 2A, 3A | 2Y, 3Y  |
| Н        | Н      | Н       |
| н        | L      | L       |
| L        | Х      | Z       |

## logic symbol<sup>†</sup>

|                     |    |     |   |     | 1  |     |
|---------------------|----|-----|---|-----|----|-----|
| 1 <mark>0E</mark> - | 1  | EN1 |   |     |    |     |
| 20E -               | 48 | EN2 |   |     |    |     |
| 30E -               | 25 | EN3 |   |     |    |     |
| 4 <u>0E</u> -       | 24 |     |   |     |    |     |
| 40E -               |    | EN4 |   | لے  |    |     |
| 1A1 -               | 47 |     | 1 | 1▽  | 2  | 1Y1 |
| 1A2 -               | 46 |     |   | 1 V | 3  | 1Y2 |
| 1A2 ·               | 44 |     |   |     | 5  | 1Y3 |
|                     | 43 |     |   |     | 6  |     |
| 1A4 -               | 41 |     | 4 | 2   | 8  | 1Y4 |
| 2A1 -               | 40 |     | 1 | 2 ▽ | 9  | 2Y1 |
| 2A2 -               | 38 |     |   |     | 11 | 2Y2 |
| 2A3 -               | 37 |     |   |     | 12 | 2Y3 |
| 2A4 -               | 36 |     |   |     | 13 | 2Y4 |
| 3A1 -               | 35 |     | 1 | 3 ▽ | 14 | 3Y1 |
| 3A2 -               | 33 |     |   |     | 16 | 3Y2 |
| 3A3 -               | 32 |     |   |     | 17 | 3Y3 |
| 3A4 -               | 30 |     |   |     | 19 | 3Y4 |
| 4A1 -               | 29 |     | 1 | 4 ▽ | 20 | 4Y1 |
| 4A2 -               | 27 |     |   |     | 20 | 4Y2 |
| 4A3 -               | 26 |     |   |     | 22 | 4Y3 |
| 4A4 -               | 20 |     |   |     | 23 | 4Y4 |

 $^\dagger$  This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.



logic diagram (positive logic) 25 1<u>0E</u> -30E -47 2 36 13 1A1 -- 1Y1 3A1 -- 3Y1 46 3 35 14 1A2 -- 1Y2 3A2 3Y2 1A3 \_\_\_\_\_ 3A3 \_\_\_\_ 5 16 - 1Y3 3Y3 1A4 \_\_\_\_\_ 6 17 32 - 1Y4 3A4 – 3Y4 48 24 20E 40E 8 30 19 41 2A1 -- 2Y1 4A1 4Y1 20 40 9 29 2A2 -2Y2 4A2 -4Y2 2A3 \_\_\_\_\_ 11 4A3 \_\_\_\_ 22 - 2Y3 4Y3 2A4 \_\_\_\_ 12 23 26 – 2Y4 4A4 -4Y4

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Supply voltage range, V <sub>CC</sub>                                    |                 |
|--------------------------------------------------------------------------|-----------------|
| Input voltage range, V <sub>I</sub> (see Note 1)                         |                 |
| Voltage range applied to any output in the high or power-off state, VO   | –0.5 V to 5.5 V |
| Current into any output in the low state, I <sub>O</sub> : SN54ABT16241A | 96 mA           |
| SN74ABT16241A                                                            | 128 mA          |
| Input clamp current, I <sub>IK</sub> (V <sub>I</sub> < 0)                | –18 mA          |
| Output clamp current, I <sub>OK</sub> (V <sub>O</sub> < 0)               |                 |
| Package thermal impedance, θ <sub>JA</sub> (see Note 2): DGG package     | 89°C/W          |
| DGV package                                                              | 93°C/W          |
| DL package                                                               | 94°C/W          |
| Storage temperature range, T <sub>stg</sub>                              | –65°C to 150°C  |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.



### recommended operating conditions (see Note 3)

|                     |                                    |                 |     |     | SN74ABT | 16241A | UNIT |
|---------------------|------------------------------------|-----------------|-----|-----|---------|--------|------|
|                     |                                    |                 | MIN | MAX | MIN     | MAX    | UNIT |
| VCC                 | Supply voltage                     |                 | 4.5 | 5.5 | 4.5     | 5.5    | V    |
| VIH                 | High-level input voltage           |                 | 2   |     | 2       |        | V    |
| VIL                 | Low-level input voltage            |                 |     | 0.8 |         | 0.8    | V    |
| VI                  | Input voltage                      |                 | 0   | VCC | 0       | VCC    | V    |
| ЮН                  | High-level output current          |                 |     | -24 |         | -32    | mA   |
| IOL                 | Low-level output current           | t               |     | 48  |         | 64     | mA   |
| $\Delta t/\Delta v$ | Input transition rise or fall rate | Outputs enabled |     | 10  |         | 10     | ns/V |
| ТА                  | Operating free-air temperature     | ir temperature  |     | 125 | -40     | 85     | °C   |

NOTE 3: All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                  | METER          | TEST CONDITIONS                                    |                                           | Т               | A = 25°C | ;     | SN54ABT16241A |      | A SN74ABT16241A |      | UNIT     |  |
|------------------|----------------|----------------------------------------------------|-------------------------------------------|-----------------|----------|-------|---------------|------|-----------------|------|----------|--|
| PARAMETER        |                | IESI CO                                            | NDITIONS                                  | MIN             | TYP†     | MAX   | MIN           | MAX  | MIN             | MAX  | UNIT     |  |
| VIK              |                | V <sub>CC</sub> = 4.5 V,                           | I <sub>I</sub> = –18 mA                   |                 |          | -1.2  |               | -1.2 |                 | -1.2 | V        |  |
|                  |                | V <sub>CC</sub> = 4.5 V,                           | I <sub>OH</sub> = –3 mA                   | 2.5             |          |       | 2.5           |      | 2.5             |      |          |  |
| VOH              |                | V <sub>CC</sub> = 5 V,                             | I <sub>OH</sub> = –3 mA                   | 3               |          |       | 3             |      | 3               |      | v        |  |
|                  |                |                                                    | I <sub>OH</sub> = -24 mA                  | 2               |          |       | 2             |      |                 |      | V        |  |
|                  |                | V <sub>CC</sub> = 4.5 V                            | I <sub>OH</sub> = -32 mA                  | 2*              |          |       |               |      | 2               |      |          |  |
| Vei              |                |                                                    | I <sub>OL</sub> = 48 mA                   |                 |          | 0.55  |               | 0.55 |                 |      | v        |  |
| VoL              |                | V <sub>CC</sub> = 4.5 V                            | I <sub>OL</sub> = 64 mA                   |                 |          | 0.55* |               |      |                 | 0.55 | v        |  |
| V <sub>hys</sub> |                |                                                    |                                           |                 | 100      |       |               |      |                 |      | mV<br>μA |  |
|                  |                | V <sub>CC</sub> = 5.5 V,                           | $V_I = V_{CC} \text{ or } GND$            |                 |          | ±1    |               | ±1   |                 | ±1   | μA       |  |
| IOZH             |                | V <sub>CC</sub> = 5.5 V,                           | V <sub>O</sub> = 2.7 V                    |                 |          | 10    |               | 10   |                 | 10   | μA       |  |
| IOZL             |                | V <sub>CC</sub> = 5.5 V,                           | V <sub>O</sub> = 0.5 V                    |                 |          | -10   |               | -10  |                 | -10  | μA       |  |
| l <sub>off</sub> |                | $V_{CC} = 0,$                                      | VI or VO $\leq$ 4.5 V                     |                 |          | ±100  |               |      |                 | ±100 | μA       |  |
| ICEX             |                | V <sub>CC</sub> = 5.5 V,<br>V <sub>O</sub> = 5.5 V | Outputs high                              |                 |          | 50    |               | 50   |                 | 50   | μA       |  |
| 10‡              |                | V <sub>CC</sub> = 5.5 V,                           | V <sub>O</sub> = 2.5 V                    | -50             | -100     | -180  | -50           | -180 | -50             | -180 | mA       |  |
|                  |                | V <sub>CC</sub> = 5.5 V,                           | Outputs high                              |                 |          | 3     |               | 3    |                 | 3    | mA       |  |
| ICC              |                | $I_{O} = 0,$                                       | Outputs low                               |                 |          | 34    |               | 34   |                 | 34   |          |  |
|                  |                | $V_{I} = V_{CC} \text{ or } GND$                   | Outputs disabled                          |                 |          | 3     |               | 3    |                 | 3    |          |  |
|                  | Data           | Data                                               | $V_{CC} = 5.5 V$ ,<br>One input at 3.4 V, | Outputs enabled |          |       | 1             |      | 1.5             |      | 1        |  |
| ∆ICC§            | inputs         | nputs Other inputs at V <sub>CC</sub> or GND       | Outputs disabled                          |                 |          | 0.05  |               | 1    |                 | 0.05 | mA       |  |
|                  | Control inputs | $V_{CC}$ = 5.5 V, One in Other inputs at $V_{CC}$  |                                           |                 |          | 1.5   |               | 1.5  |                 | 1.5  |          |  |
| Ci               | -              | V <sub>I</sub> = 2.5 V or 0.5 V                    |                                           |                 | 3.5      |       |               |      |                 |      | pF       |  |
| Co               |                | V <sub>O</sub> = 2.5 V or 0.5 V                    |                                           |                 | 7.5      |       |               |      |                 |      | рF       |  |

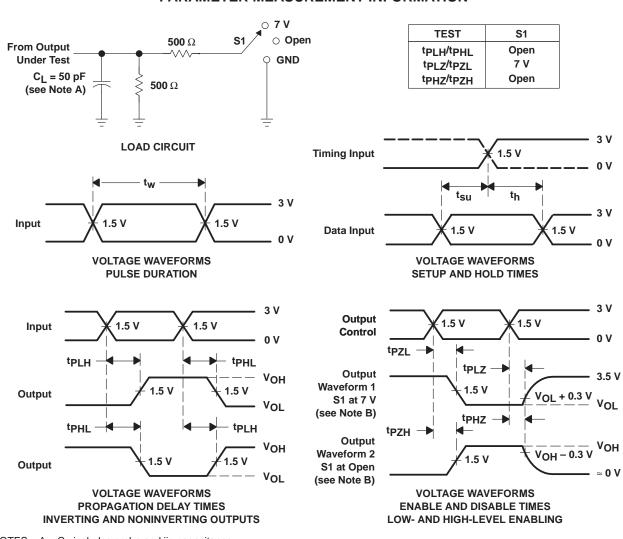
\* On products compliant to MIL-PRF-38535, this parameter does not apply.

<sup>†</sup> All typical values are at  $V_{CC}$  = 5 V.

<sup>‡</sup>Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V<sub>CC</sub> or GND.




# switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>(</sub><br>T | CC = 5 V<br>A = 25°C | /,<br>; | MIN | МАХ | UNIT |
|------------------|-----------------|----------------|---------------------|----------------------|---------|-----|-----|------|
|                  |                 |                | MIN                 | TYP                  | MAX     |     |     |      |
| <sup>t</sup> PLH | A               | v              | 0.9                 | 2.7                  | 3.4     | 0.9 | 3.8 | ns   |
| <sup>t</sup> PHL |                 | I              | 0.9                 | 2.7                  | 3.9     | 0.9 | 4.6 | 115  |
| <sup>t</sup> PZH |                 | v              | 1.2                 | 3.3                  | 4.2     | 1.2 | 5.1 |      |
| <sup>t</sup> PZL | OE or OE        | I              | 1.3                 | 3.4                  | 5.9     | 1.3 | 7   | ns   |
| <sup>t</sup> PHZ | 05 05           | v              | 1.5                 | 4.1                  | 5.5     | 1.5 | 7   | ns   |
| <sup>t</sup> PLZ | OE or OE        | I              | 1.7                 | 3.6                  | 5.1     | 1.7 | 5.7 | 115  |

switching characteristics over recommended ranges of supply voltage and operating free-air temperature,  $C_L = 50 \text{ pF}$  (unless otherwise noted) (see Figure 1)

| PARAMETER        | FROM<br>(INPUT) | TO<br>(OUTPUT) | Vo<br>Tj | CC = 5 V<br>A = 25°C | /,<br>; | MIN | МАХ | UNIT |
|------------------|-----------------|----------------|----------|----------------------|---------|-----|-----|------|
|                  |                 |                | MIN      | TYP                  | MAX     |     |     |      |
| t <sub>PLH</sub> | A               |                | 1        | 2.7                  | 3.4     | 1   | 3.7 | ns   |
| <sup>t</sup> PHL |                 | I              | 1        | 2.7                  | 3.9     | 1   | 4.5 | 115  |
| <sup>t</sup> PZH |                 | V              | 1.2      | 3.3                  | 4.2     | 1.2 | 5   | ns   |
| <sup>t</sup> PZL | OE or OE        | I              | 1.3      | 3.4                  | 5.9     | 1.3 | 6.9 | 115  |
| <sup>t</sup> PHZ | OE or OE        | V              | 1.5      | 4.1                  | 5.2     | 1.5 | 6.2 | ns   |
| t <sub>PLZ</sub> |                 | I              | 1.7      | 3.6                  | 5.1     | 1.7 | 5.6 | 115  |





### PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>O</sub> = 50  $\Omega$ , t<sub>r</sub>  $\leq$  2.5 ns, t<sub>f</sub>  $\leq$  2.5 ns. D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms



#### **IMPORTANT NOTICE**

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated