- B-Port Outputs Have Equivalent $25-\Omega$ Series Resistors, So No External Resistors Are Required
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- ESD Protection Exceeds 2000 V Per MIL-STD-833, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Typical $\mathrm{V}_{\text {OLP }}$ (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Impedance State During Power Up and Power Down
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages, Ceramic Chip Carriers (FK), Plastic (N) and Ceramic (J) DIPs, and Ceramic Flat (W) Package

description

These octal transceivers and line drivers are designed for asynchronous communication between data buses. The devices transmit data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable ($\overline{\mathrm{OE})}$ input can be used to disable the device so the buses are effectively isolated.
The B-port outputs, which are designed to sink up to 12 mA , include equivalent $25-\Omega$ series resistors to reduce overshoot and undershoot.

When V_{CC} is between 0 and 2.1 V , the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V , $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

The SN54ABT2245 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT2245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS		OPERATION
$\overline{\mathrm{OE}}$	DIR	
L	L	B data to A bus
L	H	A data to B bus
H	X	Isolation

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC-IIB is a trademark of Texas Instruments Incorporated.

WITH 3-STATE OUTPUTS

SCBS234D - SEPTEMBER 1992 - REVISED MAY 1997
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

To Seven Other Channels

schematic of A-port outputs

schematic of B-port outputs

All resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC} Input voltage range, V_{1} (except I/O ports) (see Note 1)	-0.5 V to 7 V
	-0.5 V to 7 V
Current into any output in the low state, Io: SN54ABT2245 (except B port)	96 mA
SN74ABT2245 (except B port)	128 mA
B port	30 m
Input clamp current, $\mathrm{I}_{\mathrm{K}}\left(\mathrm{V}_{1}<0\right)$	
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$	
Package thermal impedance, θ_{JA} (see Note 2): DB package	$115^{\circ} \mathrm{C} / \mathrm{W}$
DW package	$97^{\circ} \mathrm{C} / \mathrm{W}$
N package	$67^{\circ} \mathrm{C} / \mathrm{W}$
PW package	$128^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages, which use a trace length of zero.

SCBS234D - SEPTEMBER 1992 - REVISED MAY 1997
recommended operating conditions (see Note 3)

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.

SN54ABT2245, SN74ABT2245 OCTAL TRANSCEIVERS AND LINE/MOS DRIVERS WITH 3-STATE OUTPUTS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT2245		SN74ABT2245		UNIT		
		MIN	TYPt	MAX	MIN	MAX	MIN	MAX					
V_{IK}				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$			-1.2		-1.2		-1.2	V
VOH	B port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-1 \mathrm{~mA}$	3.35			3.3		3.35		V		
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{IOH}=-1 \mathrm{~mA}$	3.85			3.8		3.85				
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	$\mathrm{IOH}=-3 \mathrm{~mA}$				3		3.1				
			$1 \mathrm{OH}=-12 \mathrm{~mA}$	2.6					2.6				
	A port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-3 \mathrm{~mA}$		2.5			2.5		2.5				
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$	3			3		3				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOH}=-24 \mathrm{~mA}$	2			2						
			$\mathrm{IOH}=-32 \mathrm{~mA}$	2^{*}					2				
$\mathrm{V}_{\text {OL }}$	B port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I} \mathrm{OL}=8 \mathrm{~mA}$			0.65		0.8		0.65	V		
			$\mathrm{l} \mathrm{OL}=12 \mathrm{~mA}$			0.8				0.8			
	A port		$\mathrm{IOL}=48 \mathrm{~mA}$			0.55		0.55					
			$\mathrm{IOL}=64 \mathrm{~mA}$			0.55*				0.55			
$\mathrm{V}_{\text {hys }}$					100						mV		
1	Control inputs	$\mathrm{V}_{\mathrm{CC}}=0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND				± 1		± 1		± 1	$\mu \mathrm{A}$		
	A or B ports	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{array} \end{aligned}$				± 20		± 20		± 20			
$\mathrm{l}^{\text {OZH }}{ }^{\ddagger}$		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}, \overline{\mathrm{OE}} \geq 2 \mathrm{~V} \end{aligned}$				10		10		10	$\mu \mathrm{A}$		
IOZL ${ }^{\ddagger}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}, \overline{\mathrm{OE}} \geq 2 \mathrm{~V} \end{aligned}$				-10		-10		-10	$\mu \mathrm{A}$		
Iozpu§		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=0 \text { to } 2.1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 2.7 \mathrm{~V}, \overline{\mathrm{OE}}=\mathrm{x} \end{aligned}$				± 50		± 50		± 50	$\mu \mathrm{A}$		
IOZPD§		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V} \text { to } 0, \\ & \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 2.7 \mathrm{~V}, \overline{\mathrm{OE}}=\mathrm{x} \end{aligned}$				± 50		± 50		± 50	$\mu \mathrm{A}$		
$l_{\text {off }}$		$\mathrm{V}_{\mathrm{CC}}=0$.$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$			± 100				± 100	$\mu \mathrm{A}$		
${ }^{\text {ICEX }}$	Outputs high		$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	50			50			50	$\mu \mathrm{A}$		
$10 \\|$	B port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-25		-100	-25	-100	-25	-100	mA		
	A port			-50	-100	-180	-50	-180	-50	-180			
ICC	A or B ports	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{l}^{\mathrm{O}}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high		1	250		250		250	$\mu \mathrm{A}$		
			Outputs low		24	32		32		32	mA		
			Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$		
${ }^{\prime} \mathrm{CCC}^{\#}$	Data inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V},$ One input at 3.4 V , Other inputs at V_{CC} or GND	Outputs enabled			1.5		1.5		1.5	mA		
			Outputs disabled			0.05		0.05		0.05			
	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND				1.5		1.5		1.5			
C_{i}		$\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$ or 0.5 V		3							pF		
$\mathrm{C}_{\text {io }}$		$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V									pF		

[^0]
WITH 3-STATE OUTPUTS

SCBS234D - SEPTEMBER 1992 - REVISED MAY 1997
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT2245		SN74ABT2245		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	B	1	2.5	3.4	1	4	1	3.8	ns
tPHL			1	3.2	4.2	1	4.6	1	4.5	
tPLH	B	A	1	2.2	3.2	1	3.8	1	3.6	ns
tPHL			1	2.7	3.6	1	4.2	1	4	
tPZH	$\overline{\mathrm{OE}}$	A	1	3.3	4.6	1	5.6	1	5.5	ns
tPZL			1	3.2	4.7	1	6	1	5.7	
tPHZ	$\overline{\mathrm{OE}}$	A	2	4	5.1	2	5.7	2	5.6	ns
tPLZ			1	2.9	4	1	4.6	1	4.5	
tPZH	$\overline{\mathrm{OE}}$	B	1.5	3.6	4.9	1.5	6.3	1.5	6.1	ns
tPZL			1.5	3.9	5.3	1.5	6.6	1.5	6.3	
tPHZ	$\overline{\mathrm{OE}}$	B	1.5	3.6	4.7	1.5	5.5	1.5	5.3	ns
tPLZ			1.5	3.3	4.4	1.5	4.9	1.5	4.8	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
$\mathbf{t}_{\text {PLH }} / \mathbf{t}^{\text {PHL }}$	Open
$\mathbf{t}_{\text {PLZ }} / \mathbf{t} \mathbf{P Z L}$	7 V
$\mathbf{t}_{\text {PHZ }} / \mathbf{t} \mathbf{P Z H}$	Open

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

[^0]: * On products compliant to MIL-PRF-38535, this parameter does not apply.
 \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
 \ddagger The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{l}_{\mathrm{OZL}}$ include the input leakage current.
 § This parameter is characterized but not production tested.
 I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
 \# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

