DW OR NT PACKAGE

(TOP VIEW)

OEA

A1 🛛 2

A2**∏** 3

A3 🛛 4

A4 🛚 5

A6 🛛 7

A7 🛛 8

A8 🛛 9 ERR 10 10

CLR 11

GND 12

6

A5 [

1

SDAS119D - FEBRUARY 1987 - REVISED JANUARY 1995

24 Vcc

23 🛛 B1

22 🛛 B2

21 🛛 B3

20 🛛 B4

18 B6 П В7

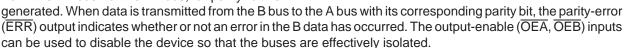
16 🛛 B8

14 0EB

13 CLK

15 PARITY

19


17

I B5

- Functionally Similar to AMD's AM29833
- High-Speed Bus Transceiver With Parity Generator/Checker
- Parity-Error Flag With Open-Collector Outputs
- Register for Storing the Parity-Error Flag
- Package Options Include Plastic Small-Outline (DW) Packages and Standard Plastic (NT) 300-mil DIPs

description

The SN74ALS29833 is an 8-bit to 9-bit parity transceiver designed for two-way communication between data buses. When data is transmitted from the A bus to the B bus, a parity bit is

A 9-bit parity generator/checker generates a parity-odd (PARITY) output and monitors the parity of the I/O ports with an open-collector ERR flag. ERR is clocked into the register on the rising edge of the clock (CLK) input. The error-flag register is cleared with a low pulse on the clear (CLR) input. When both OEA and OEB are low, data is transferred from the A bus to the B bus and inverted parity is generated. Inverted parity is a forced error condition that gives the designer more system diagnostic capability.

The SN74ALS29833 is characterized for operation from 0°C to 70°C.

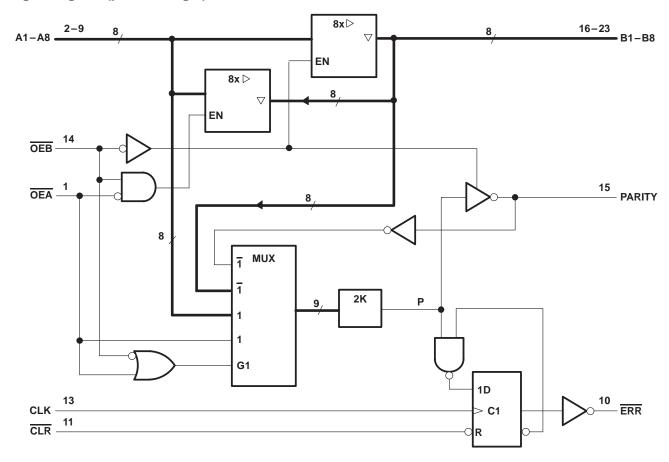
						FUN	CTION -	TABLE				
	INPUTS				OUTPUT AND I/O							
OEB	OEA	CLR	CLK	Ai Σ of Hs	Bi [†] ∑ of Ls	A	В	PARITY	ERR‡	FUNCTION		
L	н	х	х	Odd Even	NA	NA	А	L H	NA	A data to B bus and generate parity		
н	L	н	Ŷ	NA	Odd Even	в	NA	NA	H L	B data to A bus and check parity		
Х	Х	L	Х	Х	Х	Х	NA	NA	Н	Clear error-flag register		
	н	H No	No↑	Х					NC			
Н		L	No↑	Х	х	z	z	z	Н	Isolation§		
		Н	\uparrow	1 Odd A 2 2 H Isolation	Isolations							
		Н	\uparrow	Even				-	L			
L	L	х	х	Odd Even	NA	NA	А	H L	NA	A data to B bus and generate inverted parity		

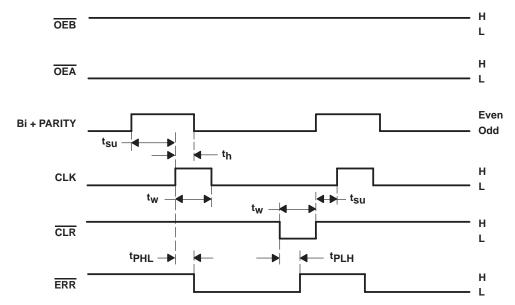
NA = not applicable, NC = no change, X = don't care

[†] Summation of high-level inputs includes PARITY along with Bi inputs.

[‡]Output states shown assume ERR was previously high.

§ In this mode, ERR, when clocked, shows inverted parity of the A bus.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


1

SDAS119D - FEBRUARY 1987 - REVISED JANUARY 1995

logic diagram (positive logic)

error-flag waveforms

SDAS119D – FEBRUARY 1987 – REVISED JANUARY 1995

ERROR-FLAG FUNCTIONS								
INPUTS		INTERNAL TO DEVICE	OUTPUT PRESTATE	OUTPUT	FUNCTION			
CLR	CLK	POINT P	ERR _{n-1} †	ERR				
н	\uparrow	Н	Н	Н				
н	\uparrow	Х	L	L	Sample			
н	\uparrow	L	Х	L				
L	Х	Х	Х	Н	Clear			

ERROR-FLAG FUNCTIONS

[†] ERR_{n-1} represents the state of ERR before any changes at CLR, CLK, or point P.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Supply voltage, V _{CC}	
Input voltage, V _I	7V
Voltage applied to a disabled I/O port	5.5 V
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range	–65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

			MIN	MAX	UNIT
VCC	Supply voltage		4.75	4.75 5.25	
VIH	High-level input voltage	2		V	
VIL	Low-level input voltage			0.8	V
VOH	High-level output voltage, ERR			5.5	V
IOH	High-level output current			-24	mA
IOL	Low-level output current	ow-level output current			
		CLK high	10		
tw	Pulse duration	CLK low	10		ns
		CLR low	10		
t _{su}		Bi and PARITY	17		ns
	Setup time before CLK↑	15		115	
t _h	Hold time, Bi and PARITY after CLK [↑]	0		ns	
ТА	Operating free-air temperature				°C

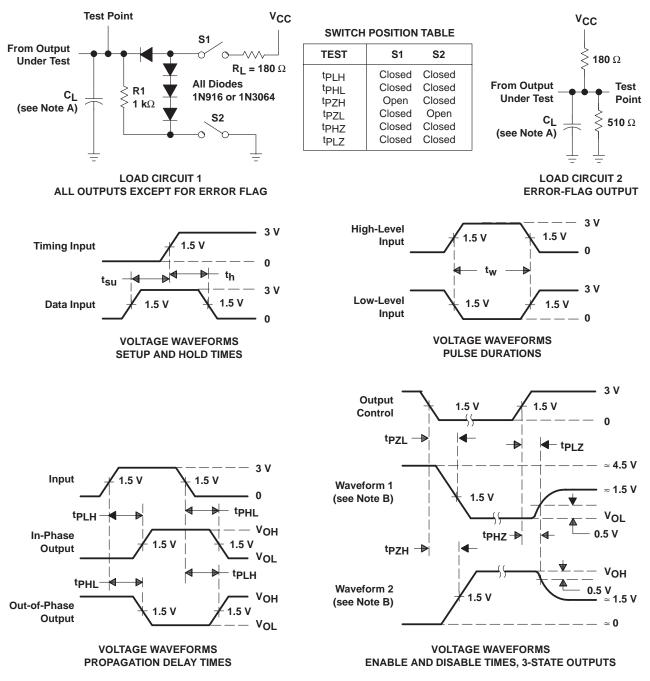
SDAS119D - FEBRUARY 1987 - REVISED JANUARY 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			түр†	MAX	UNIT
VIK		V _{CC} = 4.75 V,	lı = – 18 mA			-1.2	V
∨он			I _{OH} = -15 mA	2.4		V	V
VOH	All I/Os except ERR	V _{CC} = 4.75 V	I _{OH} = -24 mA	2			V
IOH	ERR	V _{CC} = 4.75 V,	V _{OH} = 5.5 V			0.1	mA
VOL		V _{CC} = 4.75 V,	I _{OL} = 48 mA		0.35	0.5	V
Ιį		V _{CC} = 5.25 V,	V _I = 5.5 V			0.1	mA
IIH‡		V _{CC} = 5.25 V,	V _I = 2.7 V			20	μA
. +	Data					-0.2	A
۱ _{IL} ‡	Control	V _{CC} = 5.25 V,	$V_{I} = 0.4 V$			-0.75	mA
IO§		V _{CC} = 5.25 V,	$V_{O} = 0$	-75		-250	mA
ICC		V _{CC} = 5.25 V			70	100	mA

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡] For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current. § Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

switching characteristics (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	$V_{CC} = 4.75 \text{ V to } 5.25 \text{ V},$ T _A = MIN to MAX¶	UNIT
		(001F01)		MIN MAX	
^t PLH	A or B	D A	0 50 5	8	
^t PHL	AUID	B or A	C _L = 50 pF	8	ns
^t PLH	A or B	Dert	0 000 = 5	15	ns
^t PHL	AUD	B or A	C _L = 300 pF	15	115
^t PLH	A	PARITY	0. 50 55	15	ns
^t PHL		PARITI	C _L = 50 pF	19	115
^t PLH	А		0. 200 -	22	ns
^t PHL		PARITY	C _L = 300 pF	24	115
^t PZH		A or B	C _L = 50 pF	17	ns
t _{PZL}	OEA OF OEB	AOIB		17	115
^t PZH	OEA or OEB	A or B Ci = 3	0. 200 - 5	23	ns
tPZL	OEA OF OEB	AOIB	C _L = 300 pF	23	115
^t PHZ	OEA or OEB	A or B	0. 5.5	9	ns
^t PLZ	OEA OF OEB	AOIB	C _L = 5 pF	9	115
^t PHZ		A or B	0 50 55	15	ns
^t PLZ	OEA OI OEB	AUD	C _L = 50 pF	8	115
^t PHL	CLK	ERR	C _L = 50 pF	13	ns
^t PLH	CLR	ERR	C _L = 50 pF	13	ns
^t PLH			0 50 5	17	
^t PHL	OEA	PARITY	C _L = 50 pF	19	ns
^t PLH	OEA	PARITY	C: - 200 pE	22	200
^t PHL		PAKILI	C _L = 300 pF	25	ns

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

SDAS119D - FEBRUARY 1987 - REVISED JANUARY 1995

NOTES: A. Cl includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.

Figure 1. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated