SCAS126B - MARCH 1990 - REVISED APRIL 1996

 Members of the Texas Instruments Widebus™ Family 	54ACT16543 WD PACKAGE 74ACT16543 DGG OR DL PACKAGE (TOP VIEW)
 Inputs Are TTL-Voltage Compatible 	
3-State True Outputs	10ЕАВ 🛛 1 🦳 56 🗍 1ОЕВА
 Flow-Through Architecture Optimizes 	1 <u>LEAB</u> 2 55 11 <u>LEBA</u>
PCB Layout	1 CEAB 🛛 3 54 🖸 1 CEBA
 Distributed V_{CC} and GND Pin 	GND [] 4 53 [] GND
Configurations Minimize High-Speed	1A1 🛛 5 52 🖸 1B1
Switching Noise	1A2 🛛 6 51 🖸 1B2
● EPIC [™] (Enhanced-Performance Implanted	V _{CC} [7 50 [V _{CC}
CMOS) 1-um Process	1A3 🛛 8 49 🖸 1B3
• 500-mA Typical Latch-Up Immunity at	1A4 9 48 1B4
125°C	1A5 10 47 1B5
 Package Options Include Plastic Thin 	GND 11 46 GND
Shrink Small-Outline (DGG) and 300-mil	
Shrink Small-Outline (DGG) and Soo-Init	
25-mil Center-to-Center Pin Spacings, and	
380-mil Fine-Pitch Ceramic Flat (WD)	2A1 15 42 2B1
Packages Using 25-mil Center-to-Center	
Pin Spacings	
description	
-	2A5 20 37 2B5 2A6 21 36 2B6
The 'ACT16543 are 16-bit registered transceivers	3 6
that contain two sets of D-type latches for	V _{CC} [] 22 35 [] V _{CC} 2A7 [] 23 34 [] 2B7
temporary storage of data flowing in either	2A7 U 23 34 U 2B7 2A8 U 24 33 U 2B8
direction. The 'ACT16543 can be used as two	GND 25 32 GND
8-bit transceivers or one 16-bit transceiver. Separate latch enable (LEAB or LEBA) and	2CEAB 26 31 2CEBA
output-enable (OEAB or OEBA) inputs are	2LEAB 27 30 2LEBA
provided for each register to permit independent	20EAB 28 29 20EBA
provided for each register to permit independent	

The A-to-B enable (\overline{CEAB}) and \overline{OEAB} inputs must be low to enter data from A or to output data to B. Having CEAB low and LEAB low makes the A-to-B latches transparent; a subsequent low-tohigh transition at LEAB puts the A latches in the storage mode. Data flow from B to A is similar, but requires using the CEBA, LEBA, and OEBA inputs.

control in either direction of data flow.

The 74ACT16543 is packaged in TI's shrink small-outline package, which provides twice the functionality of standard small-outline packages in the same printed-circuit-board area.

The 54ACT16543 is characterized for operation over the full military temperature range of -55°C to 125°C. The 74ACT16543 is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters

Copyright © 1996, Texas Instruments Incorporated

54ACT16543, 74ACT16543 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS SCAS126B – MARCH 1990 – REVISED APRIL 1996

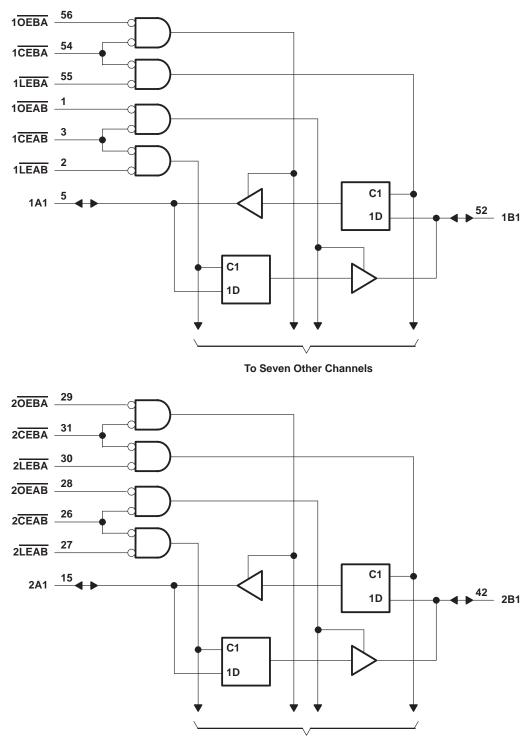
FUNCTION TABLE

(each octal register)											
INPUTS			LATCH STATUS	OUTPUT BUFFERS							
CEAB	LEAB	OEAB	A TO B [†]	BUFFERS B1-B8							
Н	Х	Х	Storing	Z							
X	Н	Х	Storing								
X	Х	Н		Z							
L	L	L	Transparent	Current A data							
L	Н	L	Storing	Previous A data [‡]							

[†] A-to-B data flow is shown: B-to-A flow control is the same except that it uses CEBA, LEBA, and OEBA.

[‡] <u>Data present before low-to-high transition of LEAB occurring while</u> CEAB is low

logic symbol[†]


10EBA	56		1EN3				
1CEBA	54		G1				
	55		1C5				
1LEBA	1						
1OEAB	3		2EN4				
1CEAB	2		G2				
1LEAB	29		2C6				
20EBA	31		7EN9				
2CEBA	30		G7				
2LEBA		N	7C11				
2OEAB	28		8EN10				
2CEAB	26		G8				
2LEAB	27		8C12				
	5		<u></u>			52	
1A1		• •	∇3	5D			1B1
	•		6D	4 ⊽		54	
1A2	6					51	1B2
1A3	8					49	1B3
1A4	9					48	1B4
1A5	10					47	1B5
143							105
440	12					45	4.00
1A6	12 13					45	1B6
1A6 1A7	13	+				45	1B6 1B7
	13 14	++				45 44 43	
1A7	13	 	⊽9	11D	++	45	1B7
1A7 1A8	13 14 15		⊽ 9 12D	 11D 10⊽	++	45 44 43 42	1B7 1B8
1A7 1A8	13 14 15 16				++	45 44 43 42 41	1B7 1B8
1A7 1A8 2A1	13 14 15 16 17				++	45 44 43 42 41 40	1B7 1B8 2B1
1A7 1A8 2A1 2A2 2A3	13 14 15 16					45 44 43 42 41 40 38	1B7 1B8 2B1 2B2 2B3
1A7 1A8 2A1 2A2 2A3 2A4	13 14 15 16 17					45 44 43 42 41 40 38	1B7 1B8 2B1 2B2 2B3 2B4
1A7 1A8 2A1 2A2 2A3 2A4 2A5	13 14 15 16 17 19					45 44 43 42 41 40 38	1B7 1B8 2B1 2B2 2B3 2B4 2B5
1A7 1A8 2A1 2A2 2A3 2A4 2A5 2A6	13 14 15 16 17 19 20					45 44 43 42 41 40 38 37	1B7 1B8 2B1 2B2 2B3 2B4 2B5 2B6
1A7 1A8 2A1 2A2 2A3 2A4 2A5	13 14 15 16 17 19 20 21					45 44 43 42 41 40 38 37 36	1B7 1B8 2B1 2B2 2B3 2B4 2B5

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

54ACT16543, 74ACT16543 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS SCAS126B – MARCH 1990 – REVISED APRIL 1996

logic diagram (positive logic)

To Seven Other Channels

SCAS126B - MARCH 1990 - REVISED APRIL 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Storage temperature range, T _{stg}

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

recommended operating conditions (see Note 3)

		54ACT16543			74	UNIT		
		MIN	NOM	M MAX MIN NOM MAX				
VCC	Supply voltage (see Note 4)	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2		h	2			V
VIL	Low-level input voltage		N.	0.8			0.8	V
VI	Input voltage	0	RE	VCC	0		VCC	V
Vo	Output voltage	0	1	VCC	0		VCC	V
ЮН	High-level output current		5	-24			-24	mA
IOL	Low-level output current	,0 ⁷	~	24			24	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	0		10	0		10	ns/V
Т _А	Operating free-air temperature	-55		125	-40		85	°C

NOTES: 3. Unused pins (inputs and I/O) must be held high or low to prevent them from floating.

4. All V_{CC} and GND pins must be connected to the proper voltage power supply.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCAS126B - MARCH 1990 - REVISED APRIL 1996

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DA	RAMETER	TEST CONDITIONS	vcc	Т	₄ = 25°C	;	54ACT	16543	74ACT	74ACT16543		
FA	RAMETER	TEST CONDITIONS V		MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT	
		IOH = -50 μA	4.5 V	4.4			4.4		4.4			
		ΙΟΗ = -30 μΑ	5.5 V	5.4			5.4		5.4			
VOH		I _{OH} = -24 mA	4.5 V	3.94			3.8		3.8		V	
		IOH = -24 mA	5.5 V	4.94			4.8		4.8			
		$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85	N.	3.85			
	1 50.4		4.5 V			0.1		0.1		0.1		
		I _{OL} = 50 μA	5.5 V			0.1	4	2 0.1		0.1		
VOL		101 - 24 mA	4.5 V			0.36	40	0.44		0.44	V	
		I _{OL} = 24 mA	5.5 V			0.36	na	0.44		0.44		
		$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V				520	1.65		1.65		
lj –	Control inputs	$V_{I} = V_{CC}$ or GND	5.5 V			±0.1	Y	±1		±1	μA	
IOZ	A or B ports [‡]	$V_{O} = V_{CC}$ or GND	5.5 V			±0.5		±5		±5	μΑ	
ICC	•	$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	5.5 V			8		80		80	μΑ	
∆ICC§		One input at 3.4 V, Other inputs at GND or V _{CC}	5.5 V			0.9		1		1	mA	
Ci	Control inputs	$V_{I} = V_{CC}$ or GND	5 V		4.5						ъE	
Cio	A or B ports	$V_{O} = V_{CC} \text{ or } GND$	5 V		12						pF	

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

[‡] For I/O ports, the parameter I_{OZ} includes the input leakage current.

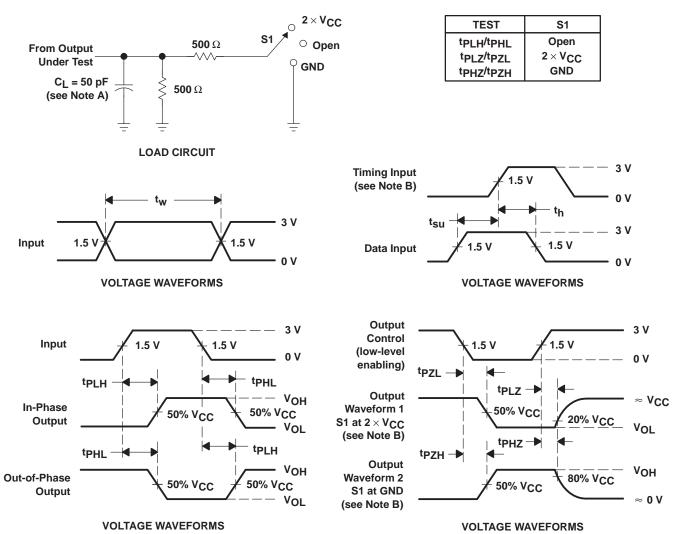
§ This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		T _A = 25°C		T _A = 25°C 54ACT16543		74ACT16543		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
tw	Pulse duration, LEAB or LEBA low	7.5		7.5	N.N	7.5		ns
t _{su}	Setup time, data before \overline{LEAB} or \overline{LEBA}	2.5		2.5		2.5		ns
th	Hold time, data after LEAB or LEBA↑	4		4		4		ns

54ACT16543, 74ACT16543 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS SCAS126B – MARCH 1990 – REVISED APRIL 1996

switching characteristics over recommended ranges of supply voltage and operating free-air temperature range (unless otherwise noted) (see Figure 1)


PARAMETER	FROM	то	T _A = 25°C		;	54ACT	16543	74ACT	16543	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH	A or B	B or A	3.5	6.9	9.5	3.5	10.5	3.5	10.5	ns
^t PHL	AUID	BUIA	3.1	7.3	10.7	3.1	11.6	3.1	11.6	115
^t PLH	LEBA or LEAB	A or B	3.9	8.6	12.3	3.9	13.8	3.9	13.8	ns
^t PHL		AUB	3.9	8.7	12.2	3.9	13.5	3.9	13.5	115
^t PZH	OEBA or OEAB	A or B	2.6	7.1	10.3	2.6	11.4	2.6	11.4	
^t PZL		AUB	3.5	8.3	11.9	3.5	13.2	3.5	13.2	ns
^t PHZ		A or B	4.1	8.2	10.5	43	11.1	4.1	11.1	ns
^t PLZ	OEBA or OEAB	AOIB	5	7.3	9.3	05	9.6	5	9.6	115
^t PZH	CEBA or CEAB	A or B	3.1	7.3	10.7	Q 3.1	11.7	3.1	11.7	20
^t PZL	CEBA OF CEAB	A OF GEAB A OF B	3.9	8.5	12.2	3.9	13.5	3.9	13.5	ns
^t PHZ	CEBA or CEAB	A or B	4.6	8.5	11	4.6	11.6	4.6	11.6	
^t PLZ		AUID	5.2	7.4	9.7	5.2	10.5	5.2	10.5	ns

operating characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

	PARAMETER			TEST COM	TYP	UNIT	
Г	C _{pd}	Power dissipation capacitance per transceiver	Outputs enabled	C _I = 50 pF,	f_ 1 M⊔→	45	~ F
			Outputs disabled	CL = 50 pF,	f = 1 MHz	12	рF

SCAS126B - MARCH 1990 - REVISED APRIL 1996

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

- Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f = 3 ns, t_f = 3 ns.

D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated