SCAS128C - MARCH 1990 - REVISED APRIL 1996

- Members of the Texas Instruments *Widebus*[™] Family
- Inputs Are TTL-Voltage Compatible
- Independent Registers and Enables for A and B Buses
- Multiplexed Real-Time and Stored Data
- Flow-Through Architecture Optimizes PCB Layout
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- *EPIC*[™] (Enhanced-Performance Implanted CMOS) 1-μm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) Packages Using 25-mil Center-to-Center Pin Spacings and 380-mil Fine-Pitch Ceramic Flat (WD) Packages Using 25-mil Center-to-Center Spacings

description

The 'ACT16652 are 16-bit bus transceivers consisting of D-type flip-flops and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers. The devices can be used as two 8-bit transceivers or one 16-bit transceiver.

Complementary output-enable (OEAB and OEBA) inputs are provided to control the transceiver functions. Select-control (SAB and SBA) inputs are provided to select whether real-time or stored data is transferred. A low input level selects real-time data, and a high input level selects stored data. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'ACT16652.

54ACT16		PACAGE	
74ACT16	652 (TOP VI		PACKAGE
10EAB	$ _1 \cup$	56	10EBA
1CLKAB	2	55] 1CLKBA
1SAB	3	54	1SBA
GND [4	53] GND
1A1 [5	52] 1B1
1A2 🛛	6	51] 1B2
V _{CC} [7	50] V _{CC}
1A3 [8	49	1B3
1A4 [9	48	1B4
1A5	10	47	1B5
GND	11	46	GND
1A6	12	45	1B6
1A7 [13	44	1B7
1A8	14		1B8
2A1 🛛	15	42	2B1
2A2	16	41	2B2
2A3 [17	40	2B3
GND [18	39	GND
2A4 [19	38	2B4
2A5 🛛	20	37	2B5
2A6 _	21		2B6
V _{CC} L	22	35	V _{CC}
2A7 🛓	23	34	2B7
2A8 _	24	33	2B8
GND [25	32] GND
2SAB	26	31	2SBA
2CLKAB	27	30	2 <u>CLKBA</u>
20EAB	28	29	20EBA

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1996, Texas Instruments Incorporated

SCAS128C - MARCH 1990 - REVISED APRIL 1996

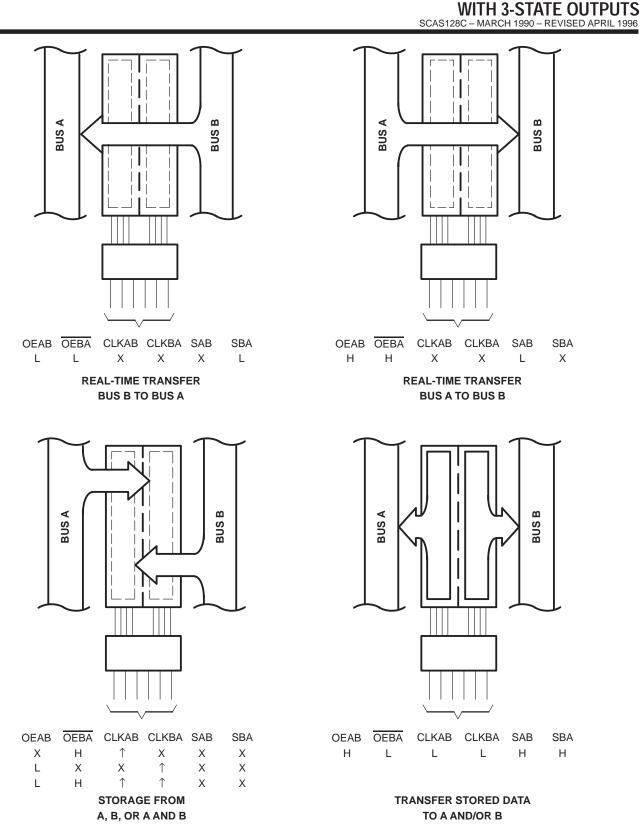
description (continued)

Data on the A or B bus, or both, can be stored in the internal D flip-flops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) inputs, regardless of the levels on the select-control or output-enable inputs. When SAB and SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines remains at its last state.

The 74ACT16652 is packaged in TI's shrink small-outline package, which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The 54ACT16652 is characterized for operation over the full military temperature range of -55°C to 125°C. The 74ACT16652 is characterized for operation from -40°C to 85°C.

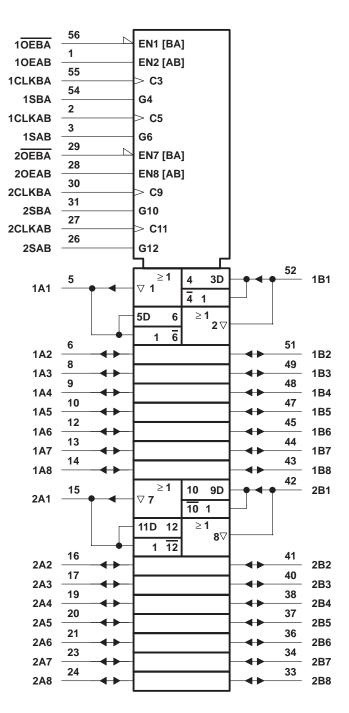
		INP	UTS			DATA	x 1/0†	
OEAB	OEBA	CLKAB	CLKBA	SAB	SBA	A1–A8	B1–B8	OPERATION OR FUNCTION
L	Н	L	L	Х	Х	Input	Input	Isolation
L	Н	\uparrow	\uparrow	Х	Х	Input	Input	Store A and B data
Х	Н	\uparrow	L	Х	Х	Input	Unspecified [‡]	Store A, hold B
Н	Н	\uparrow	\uparrow	X‡	Х	Input	Output	Store A in both registers
L	Х	L	\uparrow	Х	Х	Unspecified [‡]	Input	Hold A, store B
L	L	\uparrow	\uparrow	Х	х‡	Output	Input	Store B in both registers
L	L	Х	Х	Х	L	Output	Input	Real-time B data to A bus
L	L	Х	L	Х	Н	Output	Input	Stored B data to A bus
Н	Н	Х	Х	L	Х	Input	Output	Real-time A data to B bus
Н	Н	L	Х	Н	Х	Input	Output	Stored A data to B bus
Н	L	L	L	Н	Н	Output	Output	Stored A data to B bus and stored B data to A bus


FUNCTION TABLE

[†] The data-output functions may be enabled or disabled by a variety of level combinations at OEAB or OEBA. Data-input functions are always enabled; i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs.

[‡]Select control = L; clocks can occur simultaneously.

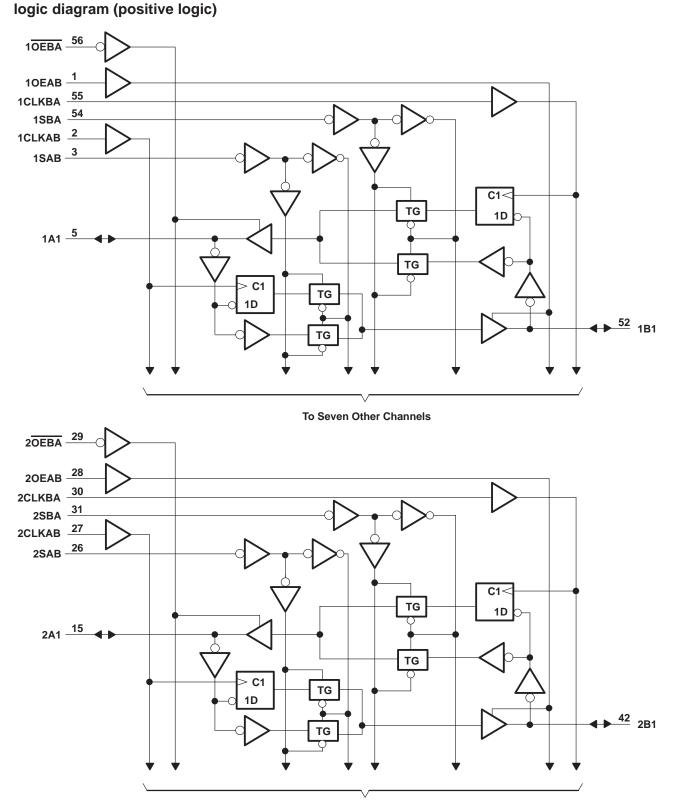
Select control = H; clocks must be staggered to load both registers.



54ACT16652, 74ACT16652

16-BIT TRANSCEIVERS AND REGISTERS

SCAS128C - MARCH 1990 - REVISED APRIL 1996


logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

54ACT16652, 74ACT16652 **16-BIT TRANSCEIVERS AND REGISTERS** WITH 3-STATE OUTPUTS SCAS128C - MARCH 1990 - REVISED APRIL 1996

To Seven Other Channels

54ACT16652, 74ACT16652 **16-BIT TRANSCEIVERS AND REGISTERS** WITH 3-STATE OUTPUTS SCAS128C - MARCH 1990 - REVISED APRIL 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} –0.5 V to V _{CC} + 0.5 V	
Output voltage range, V_O (see Note 1)	
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$) ±20	0 mA
Output clamp current, I_{OK} (V _O < 0 or V _O > V _{CC}) ±50	
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$ ± 50	0 mA
Continuous current through V _{CC} or GND	0 mA
Maximum package power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 2): DL package 1	.4 W
Storage temperature range, T _{stg} 65°C to 1	50°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

recommended operating conditions (see Note 3)

		54	ACT166	52	74ACT16652		UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2		2	2			V
VIL	Low-level input voltage		ľ.	0.8			0.8	V
VI	Input voltage	0	RE	VCC	0		VCC	V
Vo	Output voltage	0	1	VCC	0		VCC	V
ЮН	High-level output current		2	-24			-24	mA
IOL	Low-level output current	207	5	24			24	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	0		10	0		10	ns/V
ТА	Operating free-air temperature	-55		125	-40		85	°C

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.

SCAS128C - MARCH 1990 - REVISED APRIL 1996

	DAMETED	TEST CONDITIONS	V	T _A = 25°C			54ACT16652		74ACT16652		LINUT
PA	RAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
		1 FO.::A	4.5 V	4.4			4.4		4.4		
		I _{OH} = -50 μA	5.5 V	5.4			5.4		5.4		
Vон		1	4.5 V	3.94		3.8 3.8		V			
	$I_{OH} = -24 \text{ mA}$		5.5 V	4.94			4.8		4.8		
		I _{OH} = -75 mA [†]					3.85	in the second se	3.85		
V _{OL}		1	4.5 V			0.1		0.1		0.1	V
		I _{OL} = 50 μA	5.5 V			0.1		0 .1		0.1	
		1	4.5 V			0.36	6	0.44		0.44	
		I _{OL} = 24 mA	5.5 V			0.36	20	0.44		0.44	
		I _{OL} = 75 mA [†]	5.5 V				Po AO	1.65		1.65	
Ιį	Control inputs	$V_{I} = V_{CC}$ or GND	5.5 V			±0.1	Y	±1		±1	μΑ
loz‡	A or B ports	$V_{O} = V_{CC}$ or GND	5.5 V			±0.5		±5		±5	μΑ
ICC	-	$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	5.5 V			8		80		80	μΑ
∆ICC§		One input at 3.4 V, Other inputs at V _{CC} or GND	5.5 V			0.9		1		1	mA
Ci	Control inputs	VI = V _{CC} or GND	5 V		4						pF
Cio	A or B ports	$V_{O} = V_{CC} \text{ or } GND$	5 V		12						pF

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

[‡] For I/O ports, the parameter I_{OZ} includes the input leakage current.

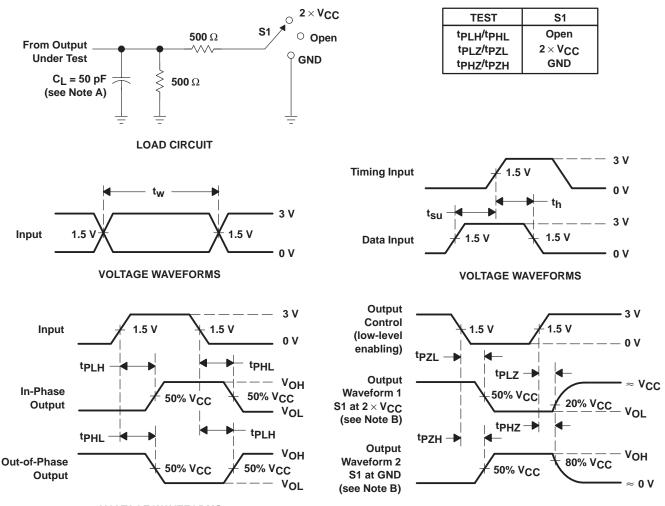
§ This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

		T _A = 25°C		54ACT16652		2 74ACT16652		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
fclock	Clock frequency	0	90	0	6 90	0	90	MHz
tw	Pulse duration, CLKAB or CLKBA high or low	5.5		5.5		5.5		ns
t _{su}	Setup time, A before CLKAB \uparrow or B before CLKBA \uparrow	4.5		4.5		4.5		ns
^t h	Hold time, A after CLKAB \uparrow or B after CLKBA \uparrow	1		1		1		ns

SCAS128C - MARCH 1990 - REVISED APRIL 1996

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 2)


00			_	-						
PARAMETER	FROM	то	Т	₄ = 25°C	;	54ACT	16652	74ACT	UNIT	
FARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
f _{max}			90			90		90		MHz
^t PLH	A or B	B or A	3.7	7.2	9.4	3.7	10.5	3.7	10.5	ns
^t PHL	AUB	BUIA	3	8.1	10.5	3	11.6	3	11.6	115
^t PLH	CLKBA or CLKAB	A or B	4.5	8.7	11.2	4.5	12.3	4.5	12.3	ns
^t PHL	CERBA OF CERAB	AOIB	4.9	8.9	11.3	4.9	12.3	4.9	12.3	115
^t PLH	SBA or SAB (with A or B high)	A or B	4.9	10.4	14.1	4.9	16	4.9	16	ns
^t PHL		AUD	4.6	8.4	10.6	4.6	11.7	4.6	11.7	115
^t PLH	SBA or SAB	A or B	3.9	7.8	10	3.9	11.2	3.9	11.2	ns
^t PHL	(with A or B low)	AOIB	5.6	12.3	14.9	5.6	16.9	5.6	16.9	115
^t PZH	OEBA	OEBA A	3	8.1	10.5	No.	11.7	3	11.7	ns
^t PZL	UEDA	~	3.9	9.4	12	3.9	13.4	3.9	13.4	115
^t PHZ		٨	5.3	7.4	8.9	5.3	9.5	5.3	9.5	ns
^t PLZ	UEBA	OEBA A	4.8	6.8	8.6	4.8	9.2	4.8	9.2	115
^t PZH	OEAB	В	4.1	7.7	9.8	4.1	10.8	4.1	10.8	ns
t _{PZL}	OEAB	0	5	9	11	5	12.4	5	12.4	115
^t PHZ	OEAB	В	4.4	8.1	10.1	4.4	10.5	4.4	10.5	ns
^t PLZ			4.3	7.7	9.7	4.3	9.9	4.3	9.9	115

operating characteristics, V_{CC} = 5 V, T_A = 25°C

	PARAMETER	TEST CO	TYP	UNIT		
C _{pd}	Dower dissinction conscitutes per transcriver	Outputs enabled	$C_{\rm L} = 50 \rm pE$	f = 1 MHz	57	2 5
	Power dissipation capacitance per transceiver	Outputs disabled	C _L = 50 pF,	T = T IVIHZ	13	рF

SCAS128C - MARCH 1990 - REVISED APRIL 1996

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

VOLTAGE WAVEFORMS

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, $Z_{O} = 50 \Omega$, $t_{f} = 3$ ns. $t_{f} = 3$ ns.
- $\mathsf{D}.\;\;\mathsf{The}\;\mathsf{outputs}\;\mathsf{are}\;\mathsf{measured}\;\mathsf{one}\;\mathsf{at}\;\mathsf{a}\;\mathsf{time}\;\mathsf{with}\;\mathsf{one}\;\mathsf{input}\;\mathsf{transition}\;\mathsf{per}\;\mathsf{measurement}.$

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated