

Octal-Bus Transceiver/Registers, 3-State

- 83 DATA CD54/74AC/ACT651 - Inverting CD54/74AC/ACT652 - Non-Inverting

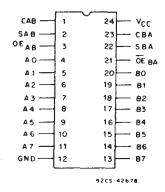
Type Features:

- Buffered inputs
- Typical propagation delay: 5.3 ns @ $V_{CC} = 5 V$, $T_A = 25^{\circ} C$, $C_L = 50 pF$

FUNCTIONAL DIAGRAM

The RCA CD54/74AC651 and CD54/74AC652 and the CD54/74ACT651 and CD54/74ACT652 3-state, octal-bus transceiver/registers use the RCA ADVANCED CMOS technology. The CD54/74AC651 and CD54/74ACT651 have inverting outputs. The CD54/74AC652 and CD54/74ACT652 have non-inverting outputs. These devices consist of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers. Output Enables OEAB and OEBA are provided to control the transceiver functions. SAB and SBA control pins are provided to select whether real-time or stored data is transferred. The circuitry used for select control will eliminate the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. A LOW input level selects real-time data, and a HIGH selects stored data. The following examples demonstrate the four fundamental busmanagement functions that can be performed with the octal-bus transceivers and registers.

Data on the A or B data bus, or both, can be stored in the internal D flip-flops by low-to-high transitions at the appropriate clock pins (CAB or CBA) regardless of the select or enable control pins. When SAB and SBA are in the realtime transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines will remain at its last state.


The CD74AC/ACT651 and CD74AC/ACT652 are supplied in 24-lead dual-in-line narrow-body plastic packages (EN suffix) and in 24-lead dual-in-line small-outline plastic packages (M suffix). Both package types are operable over the following temperature ranges: Commercial (0 to 70°C); Industrial (-40 to +85°C); and Extended Industrial/Military (-55 to +125°C).

The CD54AC/ACT651 and CD54AC/ACT652, available in chip form (H suffix), are operable over the -55 to +125°C temperature range.

Family Features:

- Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015
- SCR-Latchup-resistant CMOS process and circuit design
- Speed of bipolar FAST*/AS/S with significantly reduced power consumption
- Balanced propagation delays
- AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply
- ± 24-mA output drive current
 - Fanout to 15 FAST* ICs
 - Drives 50-ohm transmission lines

*FAST is a Registered Trademark of Fairchild Semiconductor Corp.

TERMINAL ASSIGNMENT

FUNCTION TABLE

		INP	UTS			DAT	A I/O	OPERATION (OR FUNCTION
OEAB	OE _{BA}	CAB	CBA	SAB	SBA	A0 THRU A7	B0 THRU B7	651	652
L	Н	HorL	H or L	Х	X	Input	loguit	Isolation *	Isolation*
L	Н			Х	X	Imput	Input	Store A and B Data	Store A and B Data
X	Н		HorL	. х	X	Input	Unspecified [†]	Store A, Hold B	Store A, Hold B
Н	Н			x‡	Х	Input	Output	Store A in both registers	Store A in both registers
L	X	HorL		Х	Х	Unspecified [†]	Input	Hold A, Store B	Hold, A Store B
L	L			Х	x‡	Output	Input	Store B in both registers	Store B in both registers
L	L	Х	Х	Х	L	0		Real-Time B Data to A Bus	Real-Time B Data to A Bus
L	L	Х	HorL	X	Н	Output	Input	Stored B Data to A Bus	Stored B Data to A Bus
Н	н	Х	Х	L	X			Real-Time A Data to B Bus	Real-Time A Data to B Bus
H	H	HorL	X	н	X	Input	Output	Stored A Data to B Bus	Stored A Data to B Bus
н	1	Harl	Horl	н	н			Stored A Data to B Bus and	Stored A Data to B Bus
		HorL	, m or L	П	П	Output	Output	Stored B Data to A bus	Stored B Data to A Bus

^{*} To prevent excess currents in the High-Z (isolation) modes, all I/O terminals should be terminated with 10kΩ to 1MΩ resistors.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE (V∞)0.5 to 6 V
DC INPUT DIODE CURRENT, I_{iK} (for $V_i < -0.5 \text{ V}$ or $V_i > V_{CC} + 0.5 \text{ V}$)
DC OUTPUT DIODE CURRENT, I_{OK} (for $V_0 < -0.5 \text{ V}$ or $V_0 > V_{\text{CC}} + 0.5 \text{ V}$)
DC OUTPUT SOURCE OR SINK CURRENT per Output Pin, I_0 (for $V_0 > -0.5 \text{ V}$ or $V_0 < V_{cc} + 0.5 \text{ V}$) $\pm 50 \text{ mA}$
DC V _{CC} or GROUND CURRENT (I _{CC} or I _{GND})
POWER DISSIPATION PER PACKAGE (PD):
For T _A = -55 to +100°C (PACKAGE TYPE E)
For T _A = +100 to +125°C (PACKAGE TYPE E) Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +70°C (PACKAGE TYPE M)
For T _A = +70 to +125°C (PACKAGE TYPE M) Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A)
STORAGE TEMPERATURE (T _{stg})65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 ± 1/32 in. (1.59 ± 0.79 mm) from case for 10 s maximum
T205 C

Unit inserted into PC board min. thickness 1/16 in. (1.59 mm) with solder contacting lead tips only +300°C

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTICS	L	MITS	
CHARACTERISTICS	MIN.	MAX.	UNITS
Supply-Voltage Range, Vcc*:			
(For T _A = Full Package-Temperature Range)		İ	
AC Types	1.5	5.5	V
ACT Types	4.5	5.5	V
DC Input or Output Voltage, V _I , V _O	0	Vcc	V
Operating Temperature, T _A	-55	+125	°C
Input Rise and Fall Slew Rate, dt/dv		1	
at 1.5 V to 3 V (AC Types)	0	50	ns/V
at 3.6 V to 5.5 V (AC Types)	0	20	ns/V
at 4.5 V to 5.5 V (ACT Types)	0	10	ns/V

^{*}Unless otherwise specified, all voltages are referenced to ground.

[†] The data output functions may be enabled or disabled by various signals at the OEAB or OEBA inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

[‡] Select control = L: clocks can occur simultaneously. Select control = H: clocks must be staggered in order to load both registers.

^{*}For up to 4 outputs per device; add \pm 25 mA for each additional output.

STATIC ELECTRICAL CHARACTERISTICS: AC Series

						AMBIEN	TEMPE	RATURE	(T _A) - °	C .		
CHARACTERISTICS		TEST COM	NDITIONS	V _{cc}	+	25	-40't	o +85	-55 to +125		UNITS	
		V, (V).	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
High-Level Input Voltage	ViH			1.5 3 5.5	1.2 2.1 3.85		1.2 2.1 3.85		1.2 2.1 3.85		v	
Low-Level Input Voltage	VıL			1.5 3 5.5		0.3 0.9 1.65		0.3 0.9 1.65	=	0.3 0.9 1.65	V	
High-Level Output			-0.05	1.5	1.4		1.4	_	1.4	_		
Voltage	V _{OH}	V _{IH}	-0.05	3	2.9		2.9	_	2.9]	
,		or	-0.05	4.5	4.4	_	4.4	_	4.4			
		ViL	-4	3	2.58		2.48	_	2.4		V	
			-24	4.5	3.94	_	3.8	_	3.7			
		#, * }	-75	5.5	_		3.85]	
		"'	-50	5.5	_	_	_	_	3.85	_	<u> </u>	
Low-Level Output	VoL		0.05	1.5		0.1		0.1		0.1		
Voltage		Vol	VOL	V _{IH}	0.05	3		0.1		0.1		0.1
		or	0.05	4.5		0.1		0.1		0.1		
		V _{IL}	12	3		0.36		0.44		0.5) v	
	1		ĺ	24	4.5		0.36		0.44		0.5	
		#, * }	75	5.5				1.65			[
		· · · · · · · · · · · · · · · · · · ·	50	5.5	_			-		1.65		
Input Leakage Current	l _i	V _{cc} or GND		5.5	_	±0.1		±1	_	±1	μΑ	
3-State Leakage Current	łoz	VIH or VIL Vo= Vcc or GND		5.5		±0.5	-	±5		±10	μΑ	
Quiescent Supply Current, MSI	Icc	V _{cc} or GND	0	5.5		8	-	80	-	160	μΑ	

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize nower dissipation.

STATIC ELECTRICAL CHARACTERISTICS: ACT Series

					AMBIENT TEMPERATURE (TA) - °C						
CHARACTERISTICS		TEST CONDITIONS		V _{cc}	+25		-40 to +85		-55 to +125		UNITS
		V, (V)			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input Voltage	V _{IH}			4.5 to 5.5	2	_	2		2	_	v
Low-Level Input Voltage	ViL			4.5 to 5.5	-	0.8		0.8	_	0.8	v
High-Level Output		V _{IH}	-0.05	4.5	4.4		4.4		4.4	_	
Voltage	V _{OH}	or V _{IL}	-24	4.5	3.94	_	3.8		3.7	_]
		#, * {	-75	5.5			3.85	_	_	_]
		"' ≀	-50	5.5					3.85	_	<u> </u>
Low-Level Output Voltage		Vін	0.05	4.5	–	0.1	-	0.1	_	0.1	
Voltage	Vol	or V _{IL}	24	4.5	<u> </u>	0.36	_	0.44		0.5	V
		#, * {	75	5.5	_	_	_	1.65	_	 	
		7, 7	50	5.5	_				_	1.65	1
Input Leakage Current	ŧ,	V _{cc} or GND		5.5	_	±0.1	_	±1	_	±1	μΑ
3-State Leakage Current	loz	V _{IH} or V _{IL} V _O = V _C or GND		5.5	_	±0.5	_	±5	_	±10	μΑ
Quiescent Supply Current, MSI	lcc	V _{cc} or GND	0	5.5		8	_	80	_	160	μΑ
Additional Quiescent S Current per Input Pi TTL Inputs High 1 Unit Load	Supply n \Delta lcc	V _{cc} -2.1		4.5 to 5.5		2.4	_	2.8		3	mA

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.

* Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

ACT INPUT LOADING TABLE

INPUT	UNIT LOAD*
CAB, CBA	1.25
SAB, SBA	1.2
OEAB	0.67
OE _{BA}	1.17
An, Bn	0.4

*Unit load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25°C.

PREREQUISITE FOR SWITCHING: AC Series

		AMBIEN		ENT TEMPE	RATURE (T	A) - °C	UNITS
CHARACTERISTICS	SYMBOL	(V)	-40 1	o +85	-55 to +125		
			MIN.	MAX.	MIN.	MAX.].
Max. Frequency	f _{max}	1.5 3.3* 5†	11 101 143		10 89 125		MHz
Setup Time Data to Clock	tsu	1.5 3.3 5	27 3.1 2.2	=	31 3.5 2.5	_	ns
Hold Time Data to Clock	tн	1.5 3.3 5	2 2 2	<u>-</u>	2 2 2		ns
Clock Pulse Data to Clock	tw	1.5 3.3 5	44 4.9 3.5	=	50 5.6 4	_	ns

*3.3 V: min. is @ 3 V †5 V; min. is @ 4.5 V

SWITCHING CHARACTERISTICS: AC Series; t,, t, = 3 ns, CL = 50 pF

			AMBI	ENT TEMPE	RATURE (Γ _Λ) - °C	
CHARACTERISTICS	SYMBOL	V _{cc}	-40 1	lo +85	-55 t	o +125	UNITS
	0	(V)	MIN.	MAX.	MIN.	MAX.	
Propagation Delays: Store A Data to B Bus Store B Data to A Bus 652	tры tры	1.5 3.3* 5†	4.8 3.5	154 17.1 12.3	4.7	169 18.9 13.5	ns
Store A Data to B Bus Store B Data to A Bus 651	t _{PLH} t _{PHL}	1.5 3.3 5	4.8 3.5	154 17.1 12.3	4.7 3.4	169 18.9 13.5	ns
A Data to B Bus B Data to A Bus 652	t _{PLH} t _{PHL}	1.5 3.3 5	4 2.8	125 14 10	3.9 2.8	138 15.4 11	ns
A Data to B Bus B Data to A Bus 651	telн teнl	1.5 3.3 5	4 2.8	125 14 10	3.9 2.8	138 15.4 11	ns
Select to Data 652	telH teHL	1.5 3.3 5	4.3 3.1	136 15.3 10.9	4.2	150 16.8 12	ns
Select to Data 651	t _{PLH} t _{PHL}	1.5 3.3 5	4.3 3.1	136 15.3 10.9	4.2 3	150 16.8 12	ns
3-State Enabling/ Disabling Time Bus to Output or Register to Output	tezu tezu teuz teuz	1.5 3.3 5	5.2 3.5	154 18.4 12.3	5.1 3.4	169 20.2 13.5	ns
Power Dissipation Capacitance	CPO§	_	150	Тур.	150	Тур.	pF
During Switching of Other Outputs (Output Under Test Not Switching)	V _{OHV} See Fig. 1	5		4 Typ.	@ 25°C	ე 25° C	
Max. (Peak) During Switching of Other Outputs (Output Under Test Not Switching)	Vol.P See Fig. 1	5		1 Typ.	@ 25°C		٧
Input Capacitance	C,		<u> </u>	10		10	pF
3-State Output Capacitance	Co			15	_	15	pF

*3 3 V: min, is @ 3.6 V max. is @ 3 V

†5 V: min. is @ 5.5 V max. is @ 4.5 V C_{PD} is used to determine the dynamic power consumption, per package. $P_D = V_{CC}^2 C_{PD} f_i + \Sigma (V_{CC}^2 C_L f_0)$ where $f_i =$ input frequency

fo = output frequency

C_L = output load capacitance

V_{cc} = supply voltage.

PREREQUISITE FOR SWITCHING: ACT Series

			AMBI				
CHARACTERISTICS	SYMBOL	V _{cc} (V)	-40 to +85		-55 to +125		UNITS
		(*)	MIN.	MAX.	MIN.	MAX.	
Max. Frequency	f _{max}	5*	125		110	-	MHz
Setup Time Data to Clock	tsu	5	2.2		2.5	_	ns
Hold Time Data to Clock	¹ t _H	5	2	-	2	_	ns
Clock Pulse Width	tw	5	3.9	_	4.5	_	ns

^{*5} V: min. is @ 4.5 V

SWITCHING CHARACTERISTICS: ACT Series; t_r , t_f = 3 ns, C_L = 50 pF

			AMBI	AMBIENT TEMPERATURE (TA) - °C				
CHARACTERISTICS	SYMBOL	V _{cc}	-40 1	to +85	-55 (o +125	UNITS	
		(V)	MIN.	MAX.	MIN.	MAX.]	
Propagation Delays: Store A Data to B Bus Store B Data to A Bus 652	tргн tрнг	5*	4	14.1	3.9	15.5	ns	
Store A Data to B Bus Store B Data to A Bus 651	tр _L н t _{PHL}	5	4	14.1	3.9	15.5	ns	
A Data to B Bus B Data to A Bus 652	tрын tры	5	3.2	11.4	3.1	12.5	ns	
Ā Data to B Bus B Data to A Bus 651	t _{PLH} t _{PHL}	5	3.2	11.4	3.1	12.5	ns	
Select to Data 652	t _{PLH} t _{PHL}	5	3.7	13.2	3.6	14.5	ns	
Select to Data 651	t _{PLH} t _{PHL}	5	4	14.1	3.9	15.5	ns	
3-State Enabling/ Disabling Time Bus to Output or Register to Output	t _{PZL} t _{PZH} t _{PLZ} t _{PHZ}	5	4	14.1	3.9	15.5	ns	
Power Dissipation Capacitance	CPOS	_	150	Тур.	150	Тур.	pF	
Min. (Valley) During Switching of Other Outputs (Output Under Test Not Switching)	V _{он} V _{он} v See Fig. 1	5	4 Typ. @ 25°C			v		
Max. (Peak) During Switching of Other Outputs (Output Under Test Not Switching)	Vol Volp See Fig. 1	5		1 Typ. (@ 25°C		V	
Input Capacitance	Cı	-		10	_	10	ρF	
3-State Output Capacitance	Co	_		15	_	15	pF	

^{*5} V: min. is @ 5.5 V max. is @ 4.5 V

 C_{PD} is used to determine the dynamic power consumption, per package $P_D = V_{CC}^2 \, C_{PD} \, f_i + \Sigma \, V_{CC}^2 C_L f_0 + V_{CC} \Delta I_{CC} \, where \quad f_i = input \, frequency$

fo = output frequency C_L = output load capacitance V_{cc} = supply voltage.

9205-42406

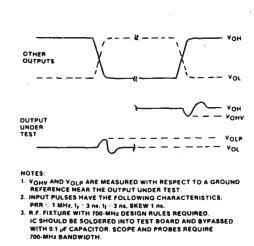


Fig. 1 - Simultaneous switching transient waveforms.

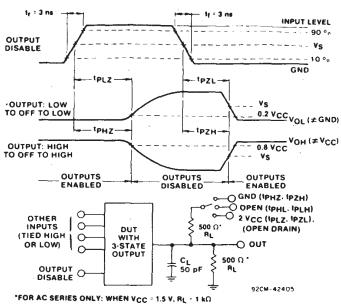


Fig. 2 - Three-state propagation delay waveforms and test circuit.

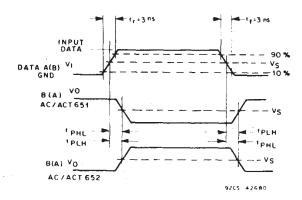


Fig. 3 - Propagation delay times.

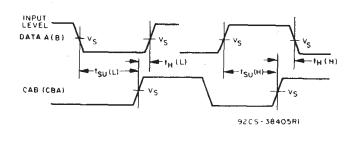


Fig. 4 - Data setup and hold times.

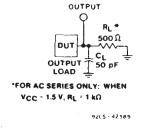


Fig. 5 - Test circuit.

	CD54/74AC	CD54/74ACT
Input Level	Vcc	3 V
Input Switching Voltage, Vs	0.5 V _{cc}	1.5 V
Output Switching Voltage, Vs	0.5 V _{cc}	0.5 V _{cc}

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated