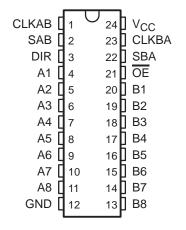
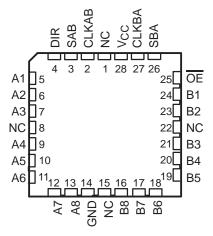
SCBS037C - AUGUST 1989 - REVISED NOVEMBER 1993

- State-of-the-Art BiCMOS Design Significantly Reduces I_{CCZ}
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Bus Transceivers/Registers
- Independent Registers and Enables for A and B Buses
- Multiplexed Real-Time and Stored Data
- Power-Up High-Impedance Mode
- Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK) and Flatpacks (W), and Plastic and Ceramic 300-mil DIPs (JT, NT)


description

These devices consist of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'BCT646.


Output-enable (\overline{OE}) and direction-control (DIR) inputs are provided to control the transceiver functions. In the transceiver mode, data present at the high-impedance port may be stored in either register or in both.

The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode)

SN54BCT646 . . . JT OR W PACKAGE SN74BCT646 . . . DW OR NT PACKAGE (TOP VIEW)

SN54BCT646 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

data. The direction control (DIR) determines which bus will receive data when \overline{OE} is low. In the isolation mode (\overline{OE} high), A data may be stored in one register and/or B data may be stored in the other register.

When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B, may be driven at a time.

The SN54BCT646 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74BCT646 is characterized for operation from 0° C to 70° C.

SCBS037C - AUGUST 1989 - REVISED NOVEMBER 1993

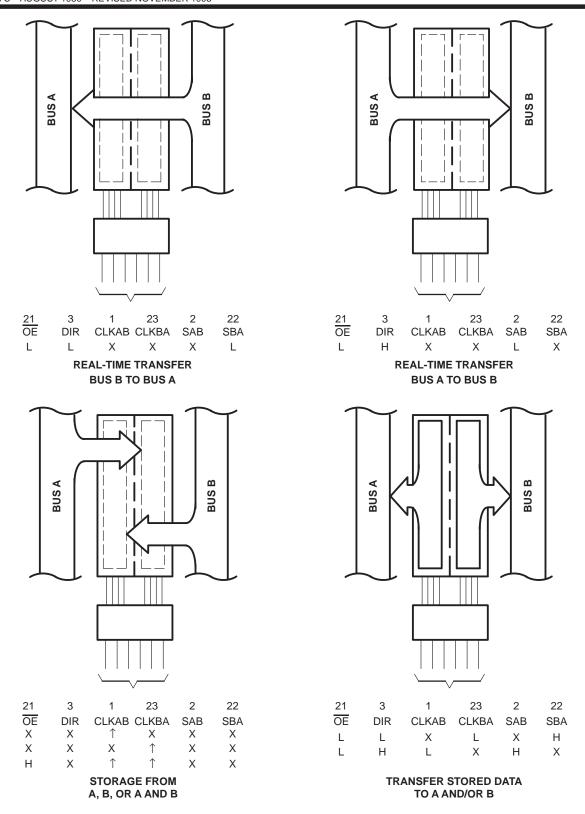
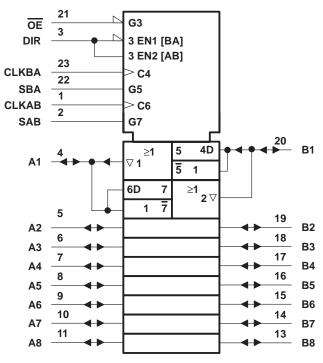


Figure 1. Bus-Management Functions

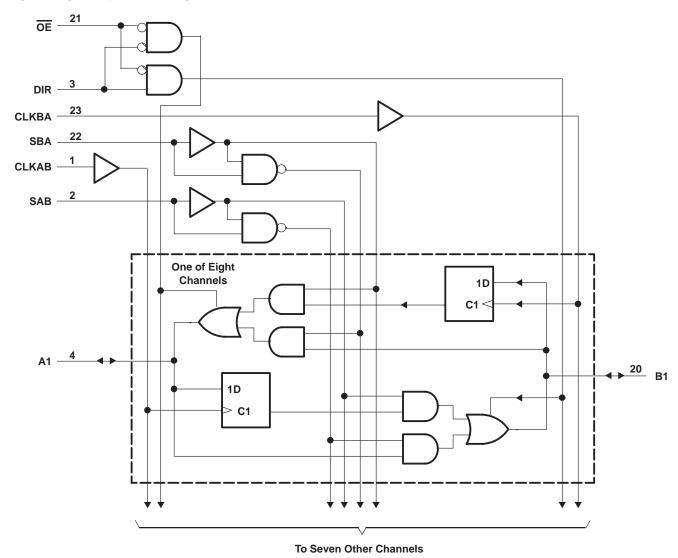
Pin numbers shown are for the DW, JT, NT, and W packages.


SCBS037C - AUGUST 1989 - REVISED NOVEMBER 1993

FUNCTION TABLE

INPUTS						DAT	A I/O	OPERATION OR FUNCTION		
OE	DIR	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	OPERATION OR FUNCTION		
Х	Х	1	Х	Х	Х	Input	Unspecified [†]	Store A, B unspecified [†]		
Х	Χ	Χ	\uparrow	X	Χ	Unspecified [†]	Input	Store B, A unspecified [†]		
Н	Χ	1	↑	Х	Х	Input	Input	Store A and B data		
Н	Χ	H or L	H or L	Х	Χ	Input disabled	Input disabled	Isolation, hold storage		
L	L	Х	Х	Х	L	Output	Input	Real-time B data to A bus		
L	L	Χ	H or L	X	Н	Output	Input	Stored B data to A bus		
L	Н	Х	Х	L	Х	Input	Output	Real-time A data to B bus		
L	Н	H or L	Χ	Н	Χ	Input	Output	Stored A data to B bus		

The data output functions may be enabled or disabled by various signals at the $\overline{\text{OE}}$ and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every low-to-high transition of the clock inputs.


logic symbol‡

[‡] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the DW, JT, NT, and W packages.

logic diagram (positive logic)

Pin numbers shown are for the DW, JT, NT, and W packages.

SCBS037C - AUGUST 1989 - REVISED NOVEMBER 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		– 0.5 V to 7 V
Input voltage range: Control inputs (s	ee Note 1)	– 0.5 V to 7 V
I/O ports (see No	ote 1)	– 0.5 V to 5.5 V
Voltage range applied to any output ir	the disabled or power-off state, VO	– 0.5 V to 7 V
Voltage range applied to any output ir	the high state, V _O	– 0.5 V to V _{CC}
Current into any output in the low stat	e: SN54BCT646	96 mÅ
	SN74BCT646	128 mA
Operating free-air temperature range:	SN54BCT646	– 55°C to 125°C
	SN74BCT646	0°C to 70°C
Storage temperature range		– 65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

recommended operating conditions

		SN54BCT646			SN	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	UNII
VCC	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High-level input voltage	2			2			V
V_{IL}	Low-level input voltage			0.8			0.8	V
lıK	Input clamp current			-18			-18	mA
ІОН	High-level output current			-12			-15	mA
loL	Low-level output current			48			64	mA
TA	Operating free-air temperature	-55		125	0		70	°C

SCBS037C - AUGUST 1989 - REVISED NOVEMBER 1993

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		7.56	CT CONDITIONS	SN	54BCT6	46	SN	UNIT			
		TEST CONDITIONS			TYP†	MAX	MIN	TYP†	MAX	UNII	
٧ıK		$V_{CC} = 4.5 \text{ V},$	$I_{I} = -18 \text{ mA}$			-1.2			-1.2	V	
			$I_{OH} = -3 \text{ mA}$	2.4	3.3		2.4	3.3			
VOH		V _{CC} = 4.5 V	$I_{OH} = -12 \text{ mA}$	2	3.2					V	
			$I_{OH} = -15 \text{ mA}$				2	3.1			
Vai		V00 - 4 5 V	I _{OL} = 48 mA		0.38	0.55				V	
VOL		V _{CC} = 4.5 V	$I_{OL} = 64 \text{ mA}$					0.42	0.55	V	
ΙΙ	A or B port	V22 - 5 5 V	V _I = 5.5 V			1			1	mA	
	Control inputs	V _{CC} = 5.5 V,				1			1		
, +	A or B port	V	V _I = 2.7 V			70			70	μΑ	
¹IH [‡]	Control inputs	$V_{CC} = 5.5 \text{ V},$				20			20		
L. +	A or B port	V22 - 5 5 V	c = 5.5 V, V _I = 0.5 V			-0.7			-0.7	mA	
'IL [‡]	Control inputs	V _{CC} = 5.5 V,				-0.7			-0.7		
los§		$V_{CC} = 5.5 \text{ V},$	V _O = 0	-100		-225	-100		-225	mA	
ICCL	A or B port	$V_{CC} = 5.5 \text{ V},$	$V_I = GND$		42	67		42	67	mA	
ICCH	A or B port	$V_{CC} = 5.5 \text{ V},$	$V_{I} = 4.5 V$		5.6	9		5.6	9	mA	
ICCZ	A or B port	V _{CC} = 5.5 V,	V _I = GND		10	16		10	16	mA	
Ci	Control inputs	V _{CC} = 5 V,	V _I = 2.5 V or 0.5 V		6			6		pF	
Cio	A or B port	V _{CC} = 5 V,	V _O = 2.5 V or 0.5 V		12			14		pF	

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

		V _{CC} :	V _{CC} = 5 V, T _A = 25°C		SN54BCT646		SN7BCTT646	
		MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency	0	83	0	83	0	83	MHz
t _W	Pulse duration, CLK high or low	6		6		6		ns
t _{su}	Setup time, A or B before CLKAB↑ or CLKBA↑	6		7		6		ns
t _h	Hold time, A or B after CLKAB↑ or CLKBA↑	0.5		0.5		0.5		ns

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. ‡ For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

[§] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

SCBS037C - AUGUST 1989 - REVISED NOVEMBER 1993

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Note 2)

PARAMETER	FROM (INPUT)	TO	V _{CC} = 5 V, T _A = 25°C			SN54BCT646		SN74BCT646		UNIT
	(INPOT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
f _{max}			83			83		83		MHz
^t PLH	CLKBA or CLKAB	A or B	3.6	7	9.4	3.6	12.4	3.6	11.2	ns
^t PHL		AUIB	3.9	7	9.2	3.9	11.5	3.9	10.6	
^t PLH	A or B	B or A	3.1	6	8.1	3.1	11.1	3.1	9.5	ns
^t PHL		BOIA	3.7	6.8	8.9	3.7	12.1	3.7	10.5	115
t _{PLH}	SAB or SBA [†] (with A or B high)	A or B	4.5	8.8	11.2	4.5	15.2	4.5	13.8	ns
^t PHL		AUID	3.3	6	8.1	3.3	9.8	3.3	9.1	115
^t PLH	SAB or SBA†	A or B	3.9	7.7	10.2	3.9	13.3	3.9	12	ns
^t PHL	(with A or B low)		4.7	8.3	10.8	4.7	13.7	4.7	12.9	
^t PZH	ŌĒ	A or B	4	7.9	10.7	4	14	4	13.2	ns
t _{PZL}	OE	AOIB	4.6	8.8	11.8	4.6	15.4	4.6	14.4	115
^t PHZ	ŌĒ	A or B	4	7.2	9.4	4	12	4	10.9	ns
t _{PLZ}	OE	AOIB	3.4	7	9.3	3.4	11.6	3.4	10.5	115
^t PZH	DIR	A or B	2.8	7.8	10.7	2.8	14	2.8	13.1	
tPZL		A UI B	3.8	8.9	11.9	3.8	15.6	3.8	14.6	ns
t _{PHZ}	DIR	A or B	3.8	8.4	10.7	3.8	13.2	3.8	12.6	ns
t _{PLZ}	אוע	AUID	3.2	7.3	9.9	3.2	12.6	3.2	11.8	115

[†]These parameters are measured with the internal output state of the storage register opposite to that of the bus input. NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated