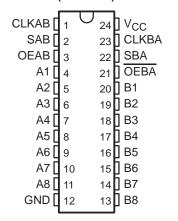
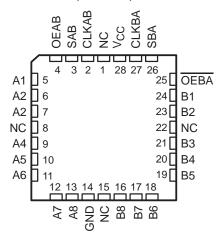
SCAS303H - JANUARY 1993 - REVISED AUGUST 1998


- EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 2 V at V_{CC} = 3.3 V, T_A = 25°C
- Support Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC})
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), Thin Shrink Small-Outline (PW)
 Packages, and Ceramic Chip Carriers (FK)


description

The SN54LVC652A octal bus transceiver and register is designed for 2.7-V to 3.6-V V_{CC} operation, and the SN74LVC652A octal bus transceiver and register is designed for 1.65-V to 3.6-V V_{CC} operation.


These devices consist of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers.

Output-enable (OEAB and OEBA) inputs are provided to control the transceiver functions. Select-control (SAB and SBA) inputs are provided to select whether real-time or stored data is transferred. The circuitry used for select control eliminates the typical decoding glitch that occurs

SN54LVC652A . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

in a multiplexer during the transition between stored and real-time data. A low input selects real-time data, and a high input selects stored data. Figure 1 illustrates the four fundamental bus-management functions that are performed with the 'LVC652A.

Data on the A or B data bus, or both, is stored in the internal D-type flip-flops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) inputs, regardless of the select- or enable-control pins. When SAB and SBA are in the real-time transfer mode, it is possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input. When all other data sources to the two sets of bus lines are at high impedance, each set of bus lines remains at its last state.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.

SCAS303H - JANUARY 1993 - REVISED AUGUST 1998

description (continued)

To ensure the high-impedance state during power up or power down, $\overline{\text{OEBA}}$ should be tied to V_{CC} through a pullup resistor and OEAB should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

The SN54LVC652A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LVC652A is characterized for operation from -40°C to 85°C.

FUNCTION TABLE

		INP	UTS			DATA	\ I/O†	ODERATION OR FUNCTION
OEAB	OEBA	CLKAB	CLKBA	SAB	SBA	A1–A8	B1-B8	OPERATION OR FUNCTION
L	Н	H or L	H or L	Х	Х	Input	Input	Isolation
L	Н	\uparrow	\uparrow	Χ	Χ	Input	Input	Store A and B data
Х	Н	1	H or L	Х	Х	Input	Unspecified [‡]	Store A, hold B
Н	Н	\uparrow	\uparrow	χ‡	Χ	Input	Output	Store A in both registers
L	Х	H or L	1	Х	Х	Unspecified [‡]	Input	Hold A, store B
L	L	\uparrow	\uparrow	Χ	X‡	Output	Input	Store B in both registers
L	L	Х	Х	Х	L	Output	Input	Real-time B data to A bus
L	L	Χ	H or L	Χ	Н	Output	Input	Stored B data to A bus
Н	Н	Х	Х	L	Х	Input	Output	Real-time A data to B bus
Н	Н	H or L	Χ	Н	Χ	Input	Output	Stored A data to B bus
Н	L	H or L	H or L	Н	Н	Output	Output	Stored A data to B bus and stored B data to A bus

The data-output functions can be enabled or disabled by a variety of level combinations at OEAB or OEBA. Data-input functions always are enabled; i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs.

[‡] Select control = L; clocks can occur simultaneously. Select control = H; clocks must be staggered to load both registers.

SCAS303H - JANUARY 1993 - REVISED AUGUST 1998

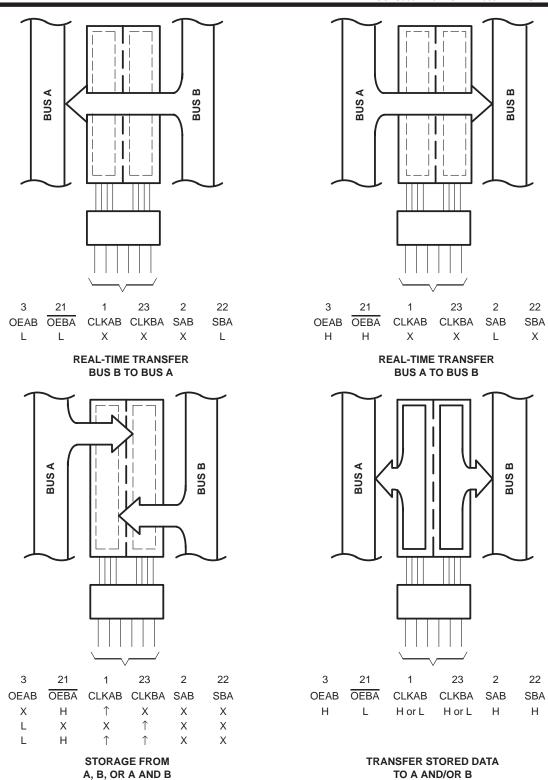
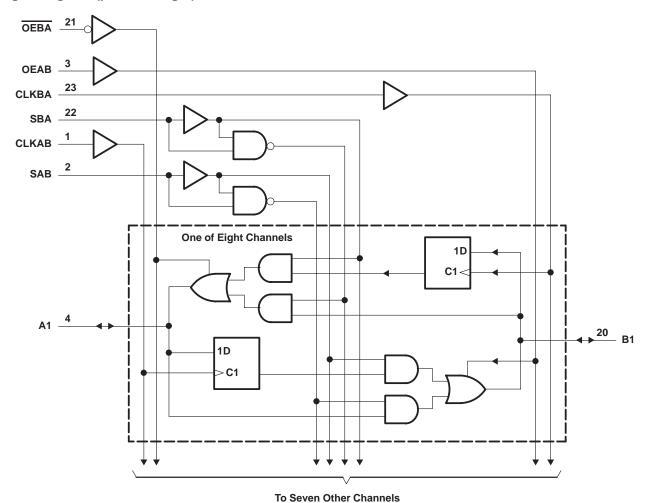


Figure 1. Bus-Management Functions

SCAS303H - JANUARY 1993 - REVISED AUGUST 1998


logic symbol†

 $^{^\}dagger$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the DB, DW, and PW packages.

logic diagram (positive logic)

Pin numbers shown are for the DB, DW, and PW packages.

SCAS303H - JANUARY 1993 - REVISED AUGUST 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		
Voltage range applied to any output in the high-	-impedance or power-off state, VO	
(see Note 1)		–0.5 V 10 6.5 V
(see Notes 1 and 2)	<u> </u>	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$)		
Output clamp current, I _{OK} (V _O < 0)		–50 mA
Continuous output current, I _O		
Continuous current through V _{CC} or GND		±100 mA
Package thermal impedance, θ_{JA} (see Note 3):		
,	DW package	
	PW package	120°C/W
Storage temperature range, T _{sta}		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. The value of V_{CC} is provided in the recommended operating conditions table.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			SN54L	VC652A	SN74LV	C652A	UNIT
			MIN	MAX	MIN	MAX	UNII
W	Complete and	Operating	2	3.6	1.65	3.6	V
VCC	Supply voltage	Data retention only	1.5		1.5		V
		V _{CC} = 1.65 V to 1.95 V			0.65 × V _{CC}		
V_{IH}	High-level input voltage	V _{CC} = 2.3 V to 2.7 V			1.7		V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		2		
		V _{CC} = 1.65 V to 1.95 V				0.35 × V _{CC}	
V_{IL}	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V				0.7	V
		V _{CC} = 2.7 V to 3.6 V		0.8		0.8	
٧ _I	Input voltage		0	5.5	0	5.5	V
\/ -	Output voltage	High or low state	0	Vcc	0	VCC	V
VO	Output voltage	3 state	0	5.5	0	5.5	٧
		V _{CC} = 1.65 V				-4	
la	High-level output current	V _{CC} = 2.3 V				-8	mA
ЮН	riign-ievei output current	$V_{CC} = 2.7 \text{ V}$		-12		-12	IIIA
		VCC = 3 V		-24		-24	
		V _{CC} = 1.65 V				4	
la.	Lavelaval autout aumant	V _{CC} = 2.3 V				8	A
IOL	Low-level output current	V _{CC} = 2.7 V		12		12	mA
		V _{CC} = 3 V		24		24	
Δt/Δν	Input transition rise or fall rate		0	5	0	5	ns/V
T _A	Operating free-air temperature		- 55	125	-40	85	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCAS303H - JANUARY 1993 - REVISED AUGUST 1998

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DA	DAMETER	TEST CONDITIONS		SN54	LVC652	A	SN74	LVC652	4	UNIT
PAI	Control inputs	TEST CONDITIONS	vcc	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNII
		Jan - 100 uA	1.65 V to 3.6 V				V _{CC} -0.2			
		I _{OH} = -100 μA	2.7 V to 3.6 V	V _{CC} -0.2						
		I _{OH} = -4 mA	1.65 V				1.2			
Vон		I _{OH} = –8 mA	2.3 V				1.7			V
		I _{OH} = -12 mA	2.7 V	2.2			2.2			
		IOH = -12 IIIA	3 V	2.4			2.4			
		I _{OH} = -24 mA	3 V	2.2			2.2			
		I _{OL} = 100 μA	1.65 V to 3.6 V						0.2	
		ΙΟΣ = 100 μΑ	2.7 V to 3.6 V			0.2				
VOL		I _{OL} = 4 mA	1.65 V						0.45	V
\ VOL		$I_{OL} = 8 \text{ mA}$	2.3 V						0.7	V
		I_{OL} = 12 mA	2.7 V			0.4			0.4	
		$I_{OL} = 24 \text{ mA}$	3 V			0.55			0.55	
l _l	Control inputs	$V_{I} = 0 \text{ to } 5.5 \text{ V}$	3.6 V			±5			±5	μΑ
l _{off}		V_I or $V_O = 5.5 V$	0						±10	μΑ
l _{OZ} ‡		V _O = 0 to 5.5 V	3.6 V			±15			±10	μΑ
		V _I = V _{CC} or GND	3.6 V			10			10	A
ICC		$3.6 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}$ $O = 0$	3.6 V			10			10	μΑ
ΔICC		One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	2.7 V to 3.6 V			500			500	μΑ
Ci	Control inputs	$V_I = V_{CC}$ or GND	3.3 V		4.5			4.5		pF
C _{io}	A or B ports	$V_O = V_{CC}$ or GND	3.3 V		7.5			7.5		pF

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 4)

			SN54LV	/C652A		
		V _{CC} = 2.7 V V _{CC}			3.3 V 3 V	UNIT
		MIN	MAX	MIN	MAX	
fclock	Clock frequency		80		100	MHz
t _W	Pulse duration	3.3		3.3		ns
t _{su}	Setup time, data before CLK↑	1.6		1.5		ns
t _h	Hold time, data after CLK↑	0.5		1.5		ns

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. ‡ For I/O ports, the parameter I_{OZ} includes the input leakage current.

[§] This applies in the disabled state only.

SCAS303H - JANUARY 1993 - REVISED AUGUST 1998

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 2 through 4)

	SN74LVC652A										
			1.8 V 5 V	V _{CC} =	2.5 V 2 V	VCC =	2.7 V	V _{CC} =	3.3 V 3 V	UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
fclock	Clock frequency		†		†		80		100	MHz	
t _W	Pulse duration	†		†		3.3		3.3		ns	
t _{su}	Setup time, data before CLK↑	†		†		1.9		1.9		ns	
t _h	Hold time, data after CLK↑	t		†	·	1.5		1.7	Ī	ns	

[†] This information was not available at the time of publication.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 4)

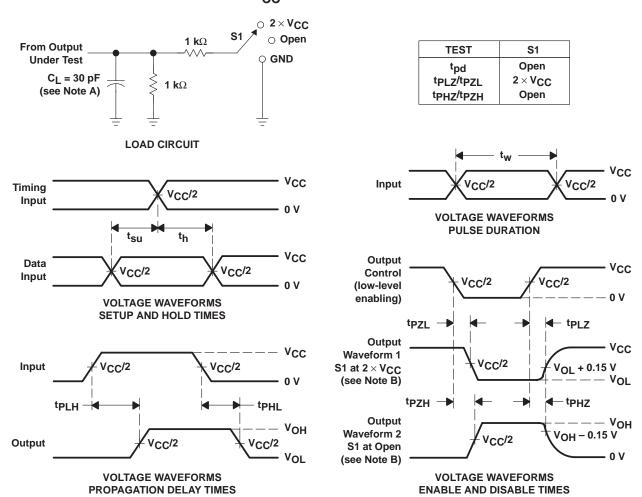
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =	2.7 V	V _{CC} =	UNIT	
			MIN	MAX	MIN	MAX	
f _{max}			80		100		MHz
	A or B	B or A		7.8	1	7.4	
^t pd	CLK	A or B		8.4	1	8	ns
	SAB or SBA	B or A		9.6	1	8.7	
t _{en}	ŌEBA	А		8.9	1	7.4	ns
^t dis	OEBA	А		8.1	1	7.5	ns
t _{en}	OEAB	В		8.6	1	7.1	ns
^t dis	OEAB	В		7.7	1	7.4	ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 2 through 4)

			SN74LVC652A								
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}			†		†		80		100		MHz
	A or B	B or A	†	†	†	†		7.8	1.5	7.4	
t _{pd}	CLK	A or B	†	†	†	†		8.4	1.5	8	ns
	SAB or SBA	B or A	†	†	†	†		9.6	1.5	8.7	
t _{en}	OEBA	А	†	†	†	†		8.9	1.5	7.4	ns
^t dis	OEBA	А	†	†	†	†		8.1	1.5	7.5	ns
t _{en}	OEAB	В	†	†	†	†		8.6	1.5	7.1	ns
^t dis	OEAB	В	t	†	†	†		7.7	1.5	7.4	ns

[†] This information was not available at the time of publication.

SCAS303H - JANUARY 1993 - REVISED AUGUST 1998

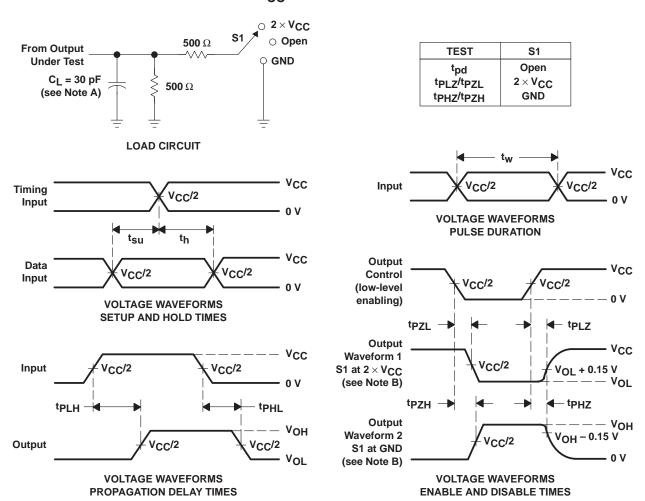

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V ± 0.15 V	V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V	UNIT	
		CONDITIONS	TYP	TYP	YP TYP			
C _{pd}	Power dissipation capacitance	Outputs enabled	f = 10 MHz	†	†	84	nE.	
Cbq	per transceiver	Outputs disabled	1 = 10 MH2	†	†	9.5	pF	

[†] This information was not available at the time of publication.

SCAS303H - JANUARY 1993 - REVISED AUGUST 1998

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 V \pm 0.15 V$

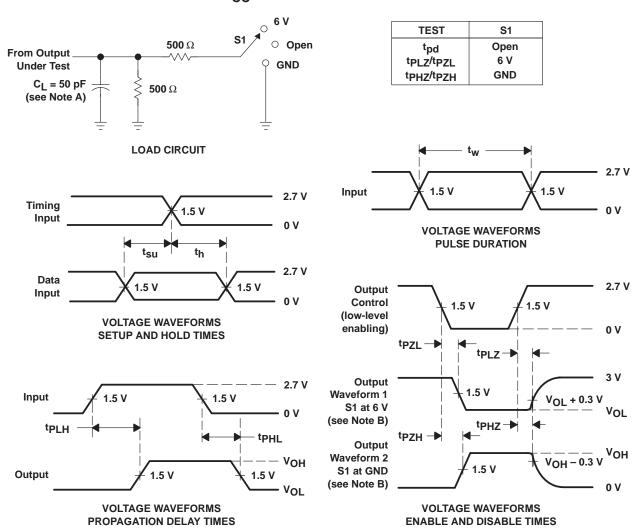

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

SCAS303H - JANUARY 1993 - REVISED AUGUST 1998

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.5 V \pm 0.2 V



- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpZL and tpZH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

SCAS303H - JANUARY 1993 - REVISED AUGUST 1998

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_r \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpl 7 and tpH7 are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 4. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated