

Data sheet acquired from Harris Semiconductor SCHS286

Octal-Bus Transceiver, 3-State, Non-Inverting

Type Features:

- Buffered inputs
- Typical propagation delay: 4.5 ns @ V_{CC} = 5 V, T_A = 25° C, C_L = 50 pF

The RCA CD54/74AC623 and CD54/74ACT623 octal-bus transceivers use the RCA ADVANCED CMOS technology. They are non-inverting, 3-state, bidirectional transceiver-buffers that allow for two-way transmission from "A" bus to "B" bus or "B" bus to "A" bus, depending on the logic levels of the Output Enable (OEAB, OEBA) inputs.

The dual Output Enable provision gives these devices the capability to store data by simultaneously enabling OEAB and OEBA. Each output reinforces its input under these conditions, and when all other data sources to the bus lines are at high-impedance, both sets of bus lines will remain in their last states.

The CD74AC623 and CD74ACT623 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line small-outline plastic packages (M suffix). Both package types are operable over the following temperature ranges: Commercial (0 to 70°C); Industrial (-40 to +85°C); and Extended Industrial/Military (-55 to +125°C).

The CD54AC623 and CD54ACT623, available in chip form (H suffix), are operable over the -55 to +125°C temperature range.

Family Features:

- Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015
- SCR-Latchup-resistant CMOS process and circuit design
- Speed of bipolar FAST*/AS/S with significantly reduced power consumption
- Balanced propagation delays
- AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply
- ± 24-mA output drive current
 - Fanout to 15 FAST* ICs
 - Drives 50-ohm transmission lines

TRUTH TABLE

OUTPUT EN	ABLE INPUTS	OPERATION
OE _{BA}	OE _{AB}	OPERATION
L	L	B DATA TO A BUS
Н	н	A DATA TO B BUS
Н	L	ISOLATION
L	н.	B DATA TO A BUS, A DATA TO B BUS

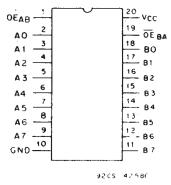
H = High level, L = Low level

Note: To prevent excess currents in the High-Z (isolation) modes, all I/O terminals should be terminated with 10 k Ω to 1 M Ω resistors.

This data sheet is applicable to the CD74AC623 and CD54/74ACT623. The CD54AC623 was not acquired from Harris Semiconductor.

^{*}FAST is a Registered Trademark of Fairchild Semiconductor Corp.

CD54/74AC623 CD54/74ACT623


MAXIMUM RATINGS, Absolute-Maximum Values:	***
DC SUPPLY-VOLTAGE (V _∞)	0.5 to 6 V
DC INPUT DIODE CURRENT, I_{iK} (for $V_i < -0.5 \text{ V}$ or $V_i > V_{CC} + 0.5 \text{ V}$)	+20 mA
DC OUTPUT DIODE CURRENT, l_{ox} (for $V_o < -0.5$ V or $V_o > V_{cc} + 0.5$ V)	±50 mA
DC OUTPUT SOURCE OR SINK CURRENT per Output Pin, I _o (for $V_0 > -0.5 \text{ V}$ or V_0	$0 < V_{cc} + 0.5 \text{ V}$ ±50 mA
DC Vcc or GROUND CURRENT (Icc or Icno)	±100 mA*
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55 to +100°C (PACKAGE TYPE E)	
For $T_A = +100$ to $+125$ °C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For $T_A = -55$ to $+70$ °C (PACKAGE TYPE M)	
For $T_A = +70$ to $+125$ °C (PACKAGE TYPE M)	. Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (T _A)	55 to +125°C
STORAGE TEMPERATURE (Tstg)	65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s maximum	+265°C
Unit inserted into PC board min. thickness 1/16 in. (1.59 mm) with solder contaction	ng lead tips only+300°C
*For up to 4 outputs per device; add \pm 25 mA for each additional output.	

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LIN	LIMITS		
CHARACTERISTIC	MIN.	MAX.	UNITS	
Supply-Voltage Range, V _{CC} *: (For T _A = Full Package-Temperature Range) AC Types ACT Types	1.5 4.5	5.5 5.5	V	
DC Input or Output Voltage, V _I , V _O	0	V _{cc}	V	
Operating Temperature, T _A	-55	+125	°C	
Input Rise and Fall Slew Rate, dt/dv at 1.5 V to 3 V (AC Types) at 3.6 V to 5.5 V (AC Types) at 4.5 V to 5.5 V (ACT Types)	0 0 0	50 20 10	ns/V ns/V ns/V	

^{*}Unless otherwise specified, all voltages are referenced to ground.

TERMINAL ASSIGNMENT

Technical Data

CD54/74AC623 CD54/74ACT623

STATIC ELECTRICAL CHARACTERISTICS: AC Series

•					AMBIENT TEMPERATURE (TA) - °C						
CHARACTERISTICS		TEST CONDITIONS		Vcc	+25		-40 to +85		-55 to +125		UNITS
		V ₁ (V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input				1.5	1.2	-	1.2	<u> </u>	1.2	· —	
Voltage	ViH			3	2.1	_	2.1	_	2.1	_	V
•				5.5	3.85		3.85		3.85	_	
Low-Level Input				1.5	<u> </u>	0.3	_	0.3	_	0.3	J
Voltage	VIL			3		0.9		0.9		0.9] v
				5.5	,	1.65	. —	1.65	_	1.65	
High-Level Output			-0.05	1.5	1.4	_	1.4		1.4	–	
Voltage	V _{OH}	V _{IH}	-0.05	3	2.9	_	2.9	_	2.9	_	
		or	-0.05	4.5	4.4	<u> </u>	4.4	_	4.4	_	
		V _{IL}	-4	3	2.58	— .	2.48		2.4	_	\ \ \
			-24	4.5	3.94	_	3.8	1 — j	3.7]
		1	-75	5.5	_	_	3.85	_	_	-	
		#, * {	-50	5.5		T -			3.85]
Low-Level Output	···		0.05	1.5	_	0.1	_	0.1	T —	0.1	
Voltage	Vol	V _{IH}	0.05	3	_	0.1	_	0.1	I –	0.1]
		or	0.05	4.5		0.1	_	0:1		0.1]
		ViL	12	3	_	0.36	_	0.44	l –	0.5	
			24	4.5		0.36	_	0.44	_	0.5]
		1	75	5.5	_	_		1.65	_	_]
		#, * {	50	5.5	_	T -	_	_		1.65]
Input Leakage Current	. 4	V _∞ or GND		5.5		±0.1		±1	-	±1	μΑ
3-State Leakage Current	loz	V _{IH} or V _{IL} V _O = V _∞ or GND		5.5		±0.5		±5		±10	μΑ
Quiescent Supply Current, MSI	Icc	V _{cc} or GND	0	5.5	_	8	_	80		160	μΑ

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize nower dissipation

power dissipation.

* Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

STATIC ELECTRICAL CHARACTERISTICS: ACT Series

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				AMBIENT TEMPERATURE (T _A) - °C						
CHARACTERISTIC	CS .	TEST CO	NDITIONS	V _{cc}	•	25	-40 to +85		-55 to +125		UNITS	
		V ₁ I ₀ (mA)		(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1.5	
High-Level Input Voltage	V _{IH}			4.5 to 5.5	2	_	2	_	2	-	·v	
Low-Level Input Voltage	V _{IL}			4.5 to 5.5	_	0.8	_	0.8	_	0.8	V,	
High-Level Output		VIH	-0.05	4.5	4.4	_	4.4	-	4.4			
Voltage	V _{OH}	or	-24	4.5	3.94	<i>-</i>	3.8	<u>-</u>	3.7	:		
		V _{IL} (-75	5.5	_	_	3.85	_	_			
		#, * {	-50	5.5		_	_		3.85	_		
Low-Level Output		VIH	0.05	4.5	_	0.1		0.1	_	0.1		
Voltage	Vol	or	24	4.5	_	0.36	_	0.44	-	0.5	1 v	
		V _{IL}	75	5.5		_	_	1.65	_	_	1	
		#, * {	50	5.5	_	_	_			1.65	1	
Input Leakage Current	l,	V∞ or GND		5.5		±0.1		±1	_	±1	μА	
3-State Leakage Current	loz	V _{tH} or V _{fL} V _O = V _{CC} or GND		5.5	_	±0.5	_	±5	· . -	±10	μΑ	
Quiescent Supply Current, MSI	lœ	V _∞ or GND	o	5.5	_	8	- .	80	_	160	μΑ	
Additional Quiescent Su Current per Input Pin TTL Inputs High 1 Unit Load		V∞-2.1		4.5 to 5.5		2.4		2.8		3	mA	

#Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.
*Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

ACT INPUT LOADING TABLE

INPUT	UNIT LOAD*
An, Bn	0.83
OE _{BA}	0.64
OE _{AB}	0.15

*Unit load is $\Delta l_{\rm CC}$ limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25° C.

CD54/74AC623 CD54/74ACT623

SWITCHING CHARACTERISTICS: AC Series; t,, t, = 3 ns, C, = 50 pF

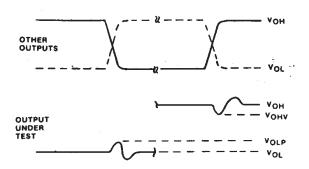
	•	V _{cc} (V)	AMBI	ENT TEMPE	RATURE (T	A) - °C	╛	
CHARACTERISTICS	SYMBOL		-40 t	-40 to +85		+125	UNITS	
			MIN.	MAX.	MIN.	MAX.		
Propagation Delays: Data to Output	tpur tphi	1.5 3.3* 5†	3.5 2.5	108 12.2 8.7	3.4 2.4	120 13.4 9.6	ns	
Output Disable to Output	tplz tpHz	1.5 3.3 5	4.8 3.5	153 17.1 12.2	4.7 3.4	168 18.8 13.4	ns	
Output Enable to Output	t _{PZL} t _{PZH}	1.5 3.3 5	 4.8 3.5	153 17.1 12.2	4.7 3.4	168 18.8 13.4	ns	
Power Dissipation Capacitance	C _{PO} §	_	66	Тур.	66	Тур.	pF	
Min. (Valley) V _{OH} During Switching of Other Outputs (Output Under Test Not Switching)	V _{онv} See Fig. 1	5	4 Typ. @ 25°C				V	
Max. (Peak) V _{OL} During Switching of Other Outputs (Output Under Test Not Switching)	Volp See Fig. 1	5	1 Typ. @ 25°C			V		
Input Capacitance	C ₁	_		10		10	pF	
3-State Output Capacitance	Co		T -	15	_	15	pF	

SWITCHING CHARACTERISTICS: ACT Series; t,, t, = 3 ns, C, = 50 pF

		V _{cc} (V)	AMBI					
CHARACTERISTICS	SYMBOL		-40 to +85		-55 to +125		UNITS	
			MIN.	MAX.	MIN.	MAX.		
Propagation Delays: Data to Output	tрін трні	5†	2.7	9.6	2.7	10.6	ns	
Output Disable to Output	telz tehz	5	3.7	13.1	3.6	14.4	ns	
Output Enable to Output	t _{PZH} t _{PZL}	5	3.7	13.1	3.6	14.4	ns	
Power Dissipation Capacitance	C _{PD} §	_	66	Тур.	66 Typ.		pF	
Min. (Valley) V _{OH} During Switching of Other Outputs (Output Under Test Not Switching)	V _{онv} See Fig. 1	5	4 Typ. @ 25°C				V	
Max. (Peak) Vo. During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP} See Fig. 1	5	1 Typ. @ 25°C				٧	
Input Capacitance	Cı			10		10	pF	
3-State Output Capacitance	Co			15	_	15	pF	

*3.3 V: min. is @ 3.6 V max. is @ 3 V

†5 V: min. is @ 5.5 V max. is @ 4.5 V


§C_{PD} is used to determine the dynamic power consumption, per channel.

For AC series: $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ For ACT series: $P_D = V_{CC}^2 f_i (C_{PD} + C_L) + V_{CC} \Delta I_{CC}$ where $f_i = \text{input frequency}$

 C_L = output load capacitance

 V_{CC} = supply voltage.

PARAMETER MEASUREMENT INFORMATION

NOTES:

- 1. VOHY AND VOLP ARE MEASURED WITH RESPECT TO A GROUND REFERENCE NEAR THE OUTPUT UNDER TEST.
- 2. INPUT PULSES HAVE THE FOLLOWING CHARACTERISTICS: PRR \leq 1 MHz, t_r = 3 ns, t_f = 3 ns, SKEW 1 ns.
 3. R.F. FIXTURE WITH 700-MHz DESIGN RULES REQUIRED.

9205-4240€

Fig. 1 - Simultaneous switching transient waveforms.

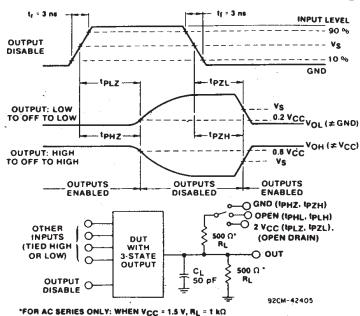
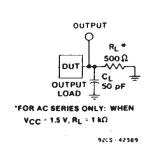



Fig. 2 - Three-state propagation delay times and test circuit.

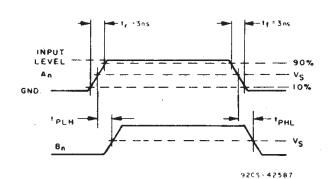


Fig. 3 - Propagation delay times and test circuit.

	CD54/74AC	CD54/74ACT
Input Level	Vcc	3 V
Input Switching Voltage, Vs	0.5 V _{cc}	1.5 V
Output Switching Voltage, Vs	0.5 V _{cc}	0.5 V _{CC}

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated