SCBS678B - SEPTEMBER 1996 - REVISED JULY 1997

		TEMBER 1990 1	
 Member of the Texas Instruments Widebus™ Family 	DGG OR DL PACKAGE (TOP VIEW)		
 State-of-the-Art Advanced Low-Voltage BiCMOS (ALB) Technology Design for 3.3-V Operation 	1DIR 1 1B1 2 1P2 2	48 10E 47 1A1	
 Schottky Diodes on All Inputs to Eliminate Overshoot and Undershoot 	GND 4	45 GND	
Industry Standard '16245 Pinout	1B4 🛛 6	43 🛛 1A4	
 Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise 	V _{CC} [7 1B5 [8	42 V _{CC} 41 1A5	
 Flow-Through Architecture Optimizes PCB Layout 	GND 🛛 10	40 1A6 39 GND	
 Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages 	(TOP VIEW)Advanced Low-Voltage1148111Technology Design for 3.3-V111111111S on All Inputs to Eliminate $3.4V$ 111 </th <th>37] 1A8 36] 2A1</th>	37] 1A8 36] 2A1	
description	GND 🛛 15	34] GND	
The SN74ALB16245 is a 16-bit transceiver designed for high-speed, low-voltage (3.3-V) V_{CC} operation. This device is intended to replace the	2B4 [17 V _{CC} [18	32 2A4 31 V _{CC}	
conventional transceiver in any speed-critical path. The small propagation delay is achieved	2B6 🛛 20	29 2A6 28 GND	
using a unity gain amplifier on the input and feedback resistors from input to output, which	2B7 🛛 22	27 2A7 26 2A8	
allows the output to track the input with a small	2DIR 🛛 24	25 20E	

This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated.

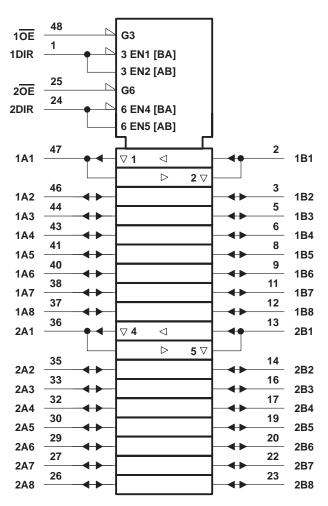
The SN74ALB16245 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (each 8-bit section)						
INPUTS OPERATION						
OE	DIR	OFERATION				
L L B data to A bus						
L	Н	A data to B bus				
Н	Х	Isolation				

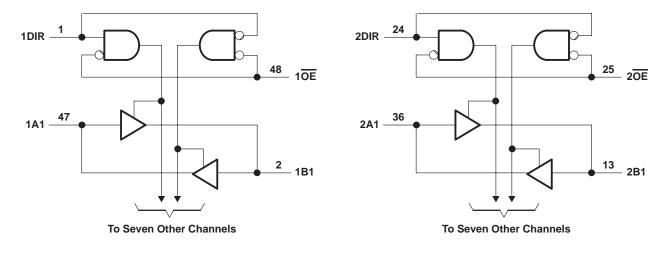
offset voltage.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1997, Texas Instruments Incorporated


SCBS678B - SEPTEMBER 1996 - REVISED JULY 1997

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SCBS678B - SEPTEMBER 1996 - REVISED JULY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I : Except I/O ports (see Note 1) I/O ports (see Notes 1 and 2)	–0.5 V to 4.6 V
Output voltage range, V_{O} (see Notes 1 and 2)	00
Input clamp current, I_{IK} ($V_I < 0$)	
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±50 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through each V _{CC} or GND	
Package thermal impedance, θ_{JA} (see Note 3): DGG package	
DL package	
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This value is limited to 4.6 V maximum.

3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions

			MIN	MAX	UNIT
Vcc	Supply voltage			3.6	V
Iон‡	I _{OH} ‡ High-level output current			-25	mA
IOL‡	Low-level output current	ut current			mA
Δt/Δv	Input transition rise or fall rate Outputs enab	ed		5	ns/V
Т _А	Operating free-air temperature			85	°C

‡ Refer to Figures 1 and 2 for typical I/O ranges.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITION	ONS	MIN	TYP§	MAX	UNIT
Viк	A or D porto	V _{CC} = 3 V	lı = 18 mA	II = 18 mA		3.7	V _{CC} +1.2	V
۷IK	A or B ports	vCC = 2 v	lı = -18 mA	I _I = -18 mA		-0.9	-1.2	v
	Control inputs	V _{CC} = 3.6 V,	$V_I = V_{CC} \text{ or } GN$	D			±10	μΑ
	A or B ports		$V_{I} = V_{CC}$	OE low		0.4	0.6	mA
lj –		V _{CC} = 3.6 V	vI = vCC	OE high			25	μΑ
		VCC = 5.0 V	$V_{I} = 0$	OE low		-0.7	-1	mA
			V] = 0	OE high			-60	μΑ
IOZH		V _{CC} = 3.6 V,	$V_{O} = 3 V$			0.7	20	μΑ
IOZL		V _{CC} = 3.6 V,	$V_{O} = 0.5 V$			-0.2	-50	μΑ
ICC/pr	uffer	V _{CC} = 3.6 V,	I _O = 0,	$V_I = V_{CC} \text{ or } GND$		3.7	5.6	mA
ICCZ	$V_{CC} = 3.6 V$, Control inputs = V_{CC} or GND		V _{CC} or GND			0.8	mA	
			V_{CC} = 3 V to 3.6 V, One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND				600	μΑ
Ci		$V_{I} = 3 V \text{ or } 0$			3.5		pF	
C _{io}		$V_{O} = 3 V \text{ or } 0$				7.5		pF

All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

 \P This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN74ALB16245 3.3-V ALB 16-BIT TRANSCEIVER WITH 3-STATE OUTPUTS SCBS678B - SEPTEMBER 1996 - REVISED JULY 1997

switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 3)

PARAMETER	FROM	то	V_{CC} = 3.3 V \pm 0.3 V			UNIT
FARAMETER	(INPUT)	(OUTPUT)	MIN	TYP†	MAX	
^t pd	A or B	B or A	0.6	1.3	2	ns
t _{en}	OE	A or B	1.5	3.2	6	ns
t _{dis}	OE	A or B	1.8	2.8	4.2	ns

[†] All typical values are at V_{CC} = 3.3 V, $T_A = 25^{\circ}C$.

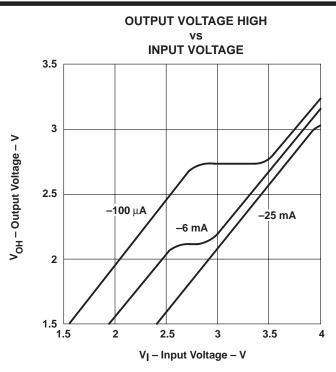


Figure 1. V_{OH} Over Recommended Free-Air Temperature Range

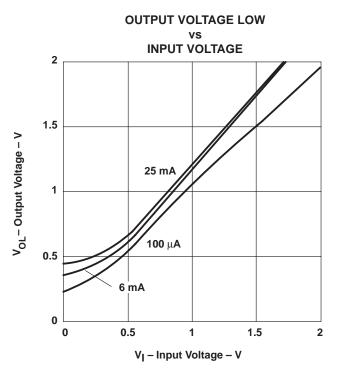
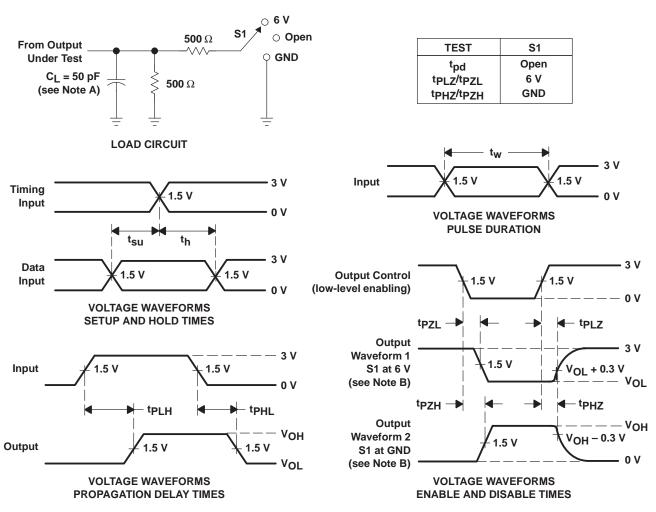



Figure 2. V_{OL} Over Recommended Free-Air Temperature Range

SCBS678B - SEPTEMBER 1996 - REVISED JULY 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tPLZ and tPHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tPLH and tPHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated